Joint MAPLE: Accelerated joint T1 and T2*$$ {{\mathrm{T}}_2}^{\ast } $$ mapping with scan‐specific self‐supervised networks

计算机科学 接头(建筑物) 数据一致性 加速度 枫木 采样(信号处理) 一致性(知识库) 算法 压缩传感 人工智能 模式识别(心理学) 计算机视觉 物理 建筑工程 植物 滤波器(信号处理) 经典力学 工程类 生物 操作系统
作者
Amir Heydari,Abbas Ahmadi,Tae Hyung Kim,Berkin Bilgiç
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:91 (6): 2294-2309 被引量:2
标识
DOI:10.1002/mrm.29989
摘要

Abstract Purpose Quantitative MRI finds important applications in clinical and research studies. However, it is encoding intensive and may suffer from prohibitively long scan times. Accelerated MR parameter mapping techniques have been developed to help address these challenges. Here, an accelerated joint T 1 , , frequency and proton density mapping technique with scan‐specific self‐supervised network reconstruction is proposed to synergistically combine parallel imaging, model‐based, and deep learning approaches to speed up parameter mapping. Methods Proposed framework, Joint MAPLE, includes parallel imaging, signal modeling, and data consistency blocks which are optimized jointly in a combined loss function. A scan‐specific self‐supervised reconstruction is embedded into the framework, which takes advantage of multi‐contrast data from a multi‐echo, multi‐flip angle, gradient echo acquisition. Results In comparison with parallel reconstruction techniques powered by low‐rank methods, emerging scan specific networks, and model‐based estimation approaches, the proposed framework reduces the reconstruction error in parameter maps by approximately two‐fold on average at acceleration rates as high as R = 16 with uniform sampling. It can outperform evaluated parallel reconstruction techniques up to four‐fold on average in the presence of challenging sub‐sampling masks. It is observed that Joint MAPLE performs well at extreme acceleration rates of R = 25 and R = 36 with error values less than 20%. Conclusion Joint MAPLE enables higher fidelity parameter estimation at high acceleration rates by synergistically combining parallel imaging and model‐based parameter mapping and exploiting multi‐echo, multi‐flip angle datasets. Utilizing a scan‐specific self‐supervised reconstruction obviates the need for large data sets for training while improving the parameter estimation ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助duoduo采纳,获得10
刚刚
科研通AI6应助郭露露采纳,获得10
刚刚
Jasper应助Oil采纳,获得10
刚刚
领导范儿应助dhppp采纳,获得10
1秒前
1秒前
善良耳机完成签到,获得积分10
1秒前
1秒前
1秒前
动听皮带发布了新的文献求助30
1秒前
孟寐以求发布了新的文献求助20
1秒前
lyu完成签到,获得积分10
1秒前
1秒前
歌儿发布了新的文献求助10
3秒前
3秒前
沐浠完成签到 ,获得积分10
3秒前
3秒前
夜离殇完成签到,获得积分10
3秒前
呆萌幼晴发布了新的文献求助10
4秒前
福尔摩曦发布了新的文献求助20
4秒前
文艺聪健完成签到,获得积分10
4秒前
4秒前
Sea_moon完成签到,获得积分10
4秒前
宋仔仔爱吃糖完成签到,获得积分10
5秒前
5秒前
超级大聪明完成签到,获得积分10
5秒前
猫猫啸日发布了新的文献求助10
5秒前
5秒前
ABC熊ABC发布了新的文献求助20
5秒前
小青椒应助英俊亦巧采纳,获得50
5秒前
5秒前
靓丽幻梅发布了新的文献求助10
5秒前
何跑跑完成签到 ,获得积分10
5秒前
6秒前
呆萌菲音完成签到,获得积分10
6秒前
神勇绮烟发布了新的文献求助10
6秒前
帅气的机器猫完成签到 ,获得积分10
6秒前
HZ发布了新的文献求助10
6秒前
脑洞疼应助优秀不愁采纳,获得10
6秒前
6秒前
熹微完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017