Joint MAPLE: Accelerated joint T1 and T2*$$ {{\mathrm{T}}_2}^{\ast } $$ mapping with scan‐specific self‐supervised networks

计算机科学 接头(建筑物) 数据一致性 加速度 枫木 采样(信号处理) 一致性(知识库) 算法 压缩传感 人工智能 模式识别(心理学) 计算机视觉 物理 建筑工程 植物 滤波器(信号处理) 经典力学 工程类 生物 操作系统
作者
Amir Heydari,Abbas Ahmadi,Tae Hyung Kim,Berkin Bilgiç
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:91 (6): 2294-2309 被引量:2
标识
DOI:10.1002/mrm.29989
摘要

Abstract Purpose Quantitative MRI finds important applications in clinical and research studies. However, it is encoding intensive and may suffer from prohibitively long scan times. Accelerated MR parameter mapping techniques have been developed to help address these challenges. Here, an accelerated joint T 1 , , frequency and proton density mapping technique with scan‐specific self‐supervised network reconstruction is proposed to synergistically combine parallel imaging, model‐based, and deep learning approaches to speed up parameter mapping. Methods Proposed framework, Joint MAPLE, includes parallel imaging, signal modeling, and data consistency blocks which are optimized jointly in a combined loss function. A scan‐specific self‐supervised reconstruction is embedded into the framework, which takes advantage of multi‐contrast data from a multi‐echo, multi‐flip angle, gradient echo acquisition. Results In comparison with parallel reconstruction techniques powered by low‐rank methods, emerging scan specific networks, and model‐based estimation approaches, the proposed framework reduces the reconstruction error in parameter maps by approximately two‐fold on average at acceleration rates as high as R = 16 with uniform sampling. It can outperform evaluated parallel reconstruction techniques up to four‐fold on average in the presence of challenging sub‐sampling masks. It is observed that Joint MAPLE performs well at extreme acceleration rates of R = 25 and R = 36 with error values less than 20%. Conclusion Joint MAPLE enables higher fidelity parameter estimation at high acceleration rates by synergistically combining parallel imaging and model‐based parameter mapping and exploiting multi‐echo, multi‐flip angle datasets. Utilizing a scan‐specific self‐supervised reconstruction obviates the need for large data sets for training while improving the parameter estimation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IM元完成签到,获得积分10
1秒前
猫里小七完成签到,获得积分10
1秒前
地狱跳跳虎完成签到,获得积分20
2秒前
zgd完成签到,获得积分10
2秒前
yan完成签到,获得积分10
2秒前
脑洞疼应助wu采纳,获得10
4秒前
英俊的铭应助热情高跟鞋采纳,获得10
4秒前
4秒前
111完成签到,获得积分10
4秒前
5秒前
在水一方应助SEANFLY采纳,获得10
5秒前
6秒前
Arthur完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助gbr0519采纳,获得10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助50
8秒前
所所应助地狱跳跳虎采纳,获得10
8秒前
无花果应助小丑采纳,获得10
8秒前
所所应助刘威采纳,获得30
9秒前
9秒前
完美世界应助G1997采纳,获得10
9秒前
10秒前
11秒前
幸福镜子发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
清柠发布了新的文献求助10
12秒前
爆米花应助tangzanwayne采纳,获得10
12秒前
12秒前
胖胖发布了新的文献求助10
12秒前
晴晴发布了新的文献求助10
13秒前
13秒前
wb发布了新的文献求助10
14秒前
14秒前
sunrase发布了新的文献求助10
15秒前
15秒前
qzp发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835