Joint MAPLE: Accelerated joint T1 and T2*$$ {{\mathrm{T}}_2}^{\ast } $$ mapping with scan‐specific self‐supervised networks

计算机科学 接头(建筑物) 数据一致性 加速度 枫木 采样(信号处理) 一致性(知识库) 算法 压缩传感 人工智能 模式识别(心理学) 计算机视觉 物理 建筑工程 植物 滤波器(信号处理) 经典力学 工程类 生物 操作系统
作者
Amir Heydari,Abbas Ahmadi,Tae Hyung Kim,Berkin Bilgiç
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:91 (6): 2294-2309 被引量:2
标识
DOI:10.1002/mrm.29989
摘要

Abstract Purpose Quantitative MRI finds important applications in clinical and research studies. However, it is encoding intensive and may suffer from prohibitively long scan times. Accelerated MR parameter mapping techniques have been developed to help address these challenges. Here, an accelerated joint T 1 , , frequency and proton density mapping technique with scan‐specific self‐supervised network reconstruction is proposed to synergistically combine parallel imaging, model‐based, and deep learning approaches to speed up parameter mapping. Methods Proposed framework, Joint MAPLE, includes parallel imaging, signal modeling, and data consistency blocks which are optimized jointly in a combined loss function. A scan‐specific self‐supervised reconstruction is embedded into the framework, which takes advantage of multi‐contrast data from a multi‐echo, multi‐flip angle, gradient echo acquisition. Results In comparison with parallel reconstruction techniques powered by low‐rank methods, emerging scan specific networks, and model‐based estimation approaches, the proposed framework reduces the reconstruction error in parameter maps by approximately two‐fold on average at acceleration rates as high as R = 16 with uniform sampling. It can outperform evaluated parallel reconstruction techniques up to four‐fold on average in the presence of challenging sub‐sampling masks. It is observed that Joint MAPLE performs well at extreme acceleration rates of R = 25 and R = 36 with error values less than 20%. Conclusion Joint MAPLE enables higher fidelity parameter estimation at high acceleration rates by synergistically combining parallel imaging and model‐based parameter mapping and exploiting multi‐echo, multi‐flip angle datasets. Utilizing a scan‐specific self‐supervised reconstruction obviates the need for large data sets for training while improving the parameter estimation ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Ms采纳,获得10
刚刚
慕青应助烯灯采纳,获得10
2秒前
2秒前
2秒前
英姑应助悦耳的盼芙采纳,获得10
2秒前
林林总总发布了新的文献求助10
2秒前
2秒前
深情安青应助lisali采纳,获得10
3秒前
3秒前
阿猫发布了新的文献求助10
3秒前
3秒前
Hello应助稳重的雅绿采纳,获得10
4秒前
4秒前
ty完成签到,获得积分10
4秒前
baobaot发布了新的文献求助10
4秒前
Yi完成签到,获得积分10
4秒前
4秒前
4秒前
搜集达人应助luym采纳,获得10
5秒前
5秒前
完美世界应助555采纳,获得10
5秒前
小二郎应助jl采纳,获得10
5秒前
5秒前
呼安完成签到,获得积分10
5秒前
5秒前
6秒前
isabelwy完成签到,获得积分10
6秒前
6秒前
6秒前
Faith完成签到,获得积分10
7秒前
可爱的弘文完成签到,获得积分10
7秒前
7秒前
7秒前
乔木木完成签到,获得积分10
7秒前
7秒前
小飞鼠发布了新的文献求助10
7秒前
唐飒发布了新的文献求助10
7秒前
痴痴的噜完成签到,获得积分10
8秒前
8秒前
rouxi发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836