Joint MAPLE: Accelerated joint T1 and T2*$$ {{\mathrm{T}}_2}^{\ast } $$ mapping with scan‐specific self‐supervised networks

计算机科学 接头(建筑物) 数据一致性 加速度 枫木 采样(信号处理) 一致性(知识库) 算法 压缩传感 人工智能 模式识别(心理学) 计算机视觉 物理 建筑工程 植物 滤波器(信号处理) 经典力学 工程类 生物 操作系统
作者
Amir Heydari,Abbas Ahmadi,Tae Hyung Kim,Berkin Bilgiç
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:91 (6): 2294-2309 被引量:2
标识
DOI:10.1002/mrm.29989
摘要

Abstract Purpose Quantitative MRI finds important applications in clinical and research studies. However, it is encoding intensive and may suffer from prohibitively long scan times. Accelerated MR parameter mapping techniques have been developed to help address these challenges. Here, an accelerated joint T 1 , , frequency and proton density mapping technique with scan‐specific self‐supervised network reconstruction is proposed to synergistically combine parallel imaging, model‐based, and deep learning approaches to speed up parameter mapping. Methods Proposed framework, Joint MAPLE, includes parallel imaging, signal modeling, and data consistency blocks which are optimized jointly in a combined loss function. A scan‐specific self‐supervised reconstruction is embedded into the framework, which takes advantage of multi‐contrast data from a multi‐echo, multi‐flip angle, gradient echo acquisition. Results In comparison with parallel reconstruction techniques powered by low‐rank methods, emerging scan specific networks, and model‐based estimation approaches, the proposed framework reduces the reconstruction error in parameter maps by approximately two‐fold on average at acceleration rates as high as R = 16 with uniform sampling. It can outperform evaluated parallel reconstruction techniques up to four‐fold on average in the presence of challenging sub‐sampling masks. It is observed that Joint MAPLE performs well at extreme acceleration rates of R = 25 and R = 36 with error values less than 20%. Conclusion Joint MAPLE enables higher fidelity parameter estimation at high acceleration rates by synergistically combining parallel imaging and model‐based parameter mapping and exploiting multi‐echo, multi‐flip angle datasets. Utilizing a scan‐specific self‐supervised reconstruction obviates the need for large data sets for training while improving the parameter estimation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不舍天真发布了新的文献求助20
1秒前
小可爱发布了新的文献求助10
1秒前
张文静发布了新的文献求助10
3秒前
leaves发布了新的文献求助10
3秒前
香蕉觅云应助风yiya采纳,获得10
3秒前
tianzml0应助害怕的映菱采纳,获得10
4秒前
5秒前
圆圆的分子球完成签到 ,获得积分10
5秒前
7秒前
8秒前
萝卜干完成签到,获得积分10
8秒前
8秒前
隐形曼青应助任性的乐巧采纳,获得10
10秒前
10秒前
zxvcbnm发布了新的文献求助10
11秒前
小二郎应助荼蘼如雪采纳,获得10
12秒前
12秒前
wsqg123发布了新的文献求助10
12秒前
12秒前
开心笑翠发布了新的文献求助10
13秒前
芳心纵火犯完成签到,获得积分10
14秒前
queen814发布了新的文献求助30
14秒前
axiao发布了新的文献求助10
14秒前
14秒前
XD完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
十一玮发布了新的文献求助10
17秒前
我爱小苏打完成签到 ,获得积分10
19秒前
韩邹光发布了新的文献求助10
19秒前
空灵紫玉完成签到,获得积分20
19秒前
无聊的朋友完成签到,获得积分20
20秒前
张慧仪发布了新的文献求助10
21秒前
傲娇猫咪完成签到,获得积分10
22秒前
23秒前
荼蘼如雪发布了新的文献求助10
23秒前
Ava应助空灵紫玉采纳,获得10
23秒前
25秒前
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112