Joint MAPLE: Accelerated joint T1 and T2*$$ {{\mathrm{T}}_2}^{\ast } $$ mapping with scan‐specific self‐supervised networks

计算机科学 接头(建筑物) 数据一致性 加速度 枫木 采样(信号处理) 一致性(知识库) 算法 压缩传感 人工智能 模式识别(心理学) 计算机视觉 物理 建筑工程 植物 滤波器(信号处理) 经典力学 工程类 生物 操作系统
作者
Amir Heydari,Abbas Ahmadi,Tae Hyung Kim,Berkin Bilgiç
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:91 (6): 2294-2309 被引量:2
标识
DOI:10.1002/mrm.29989
摘要

Abstract Purpose Quantitative MRI finds important applications in clinical and research studies. However, it is encoding intensive and may suffer from prohibitively long scan times. Accelerated MR parameter mapping techniques have been developed to help address these challenges. Here, an accelerated joint T 1 , , frequency and proton density mapping technique with scan‐specific self‐supervised network reconstruction is proposed to synergistically combine parallel imaging, model‐based, and deep learning approaches to speed up parameter mapping. Methods Proposed framework, Joint MAPLE, includes parallel imaging, signal modeling, and data consistency blocks which are optimized jointly in a combined loss function. A scan‐specific self‐supervised reconstruction is embedded into the framework, which takes advantage of multi‐contrast data from a multi‐echo, multi‐flip angle, gradient echo acquisition. Results In comparison with parallel reconstruction techniques powered by low‐rank methods, emerging scan specific networks, and model‐based estimation approaches, the proposed framework reduces the reconstruction error in parameter maps by approximately two‐fold on average at acceleration rates as high as R = 16 with uniform sampling. It can outperform evaluated parallel reconstruction techniques up to four‐fold on average in the presence of challenging sub‐sampling masks. It is observed that Joint MAPLE performs well at extreme acceleration rates of R = 25 and R = 36 with error values less than 20%. Conclusion Joint MAPLE enables higher fidelity parameter estimation at high acceleration rates by synergistically combining parallel imaging and model‐based parameter mapping and exploiting multi‐echo, multi‐flip angle datasets. Utilizing a scan‐specific self‐supervised reconstruction obviates the need for large data sets for training while improving the parameter estimation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AAA完成签到,获得积分10
1秒前
阿佳发布了新的文献求助10
2秒前
科研通AI6应助changewoo采纳,获得10
2秒前
华仔应助大海采纳,获得10
4秒前
skywalker完成签到,获得积分10
4秒前
4秒前
5秒前
123456发布了新的文献求助10
5秒前
5秒前
研友_VZG7GZ应助hulahula采纳,获得10
6秒前
爆米花应助勤恳怀梦采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
希望天下0贩的0应助helo采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
怕黑犀牛应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
大力信封应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
北沐完成签到,获得积分10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Stella应助科研通管家采纳,获得30
8秒前
慕青应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
桐桐应助腦內小劇場采纳,获得10
8秒前
8秒前
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057