The performance of artificial intelligence chatbot large language models to address skeletal biology and bone health queries

背景(考古学) 聊天机器人 相关性(法律) 对话框 领域(数学) 计算机科学 医学 数据科学 心理学 人工智能 万维网 生物 古生物学 数学 政治学 纯数学 法学
作者
Michelle Cung,Branden R. Sosa,He S. Yang,Michelle M. McDonald,Brya G. Matthews,Annegreet G. Veldhuis‐Vlug,Erik A. Imel,Marc N. Wein,Emily M. Stein,Matthew B. Greenblatt
出处
期刊:Journal of Bone and Mineral Research [Wiley]
卷期号:39 (2): 106-115 被引量:2
标识
DOI:10.1093/jbmr/zjad007
摘要

Abstract Artificial intelligence (AI) chatbots utilizing large language models (LLMs) have recently garnered significant interest due to their ability to generate humanlike responses to user inquiries in an interactive dialog format. While these models are being increasingly utilized to obtain medical information by patients, scientific and medical providers, and trainees to address biomedical questions, their performance may vary from field to field. The opportunities and risks these chatbots pose to the widespread understanding of skeletal health and science are unknown. Here we assess the performance of 3 high-profile LLM chatbots, Chat Generative Pre-Trained Transformer (ChatGPT) 4.0, BingAI, and Bard, to address 30 questions in 3 categories: basic and translational skeletal biology, clinical practitioner management of skeletal disorders, and patient queries to assess the accuracy and quality of the responses. Thirty questions in each of these categories were posed, and responses were independently graded for their degree of accuracy by four reviewers. While each of the chatbots was often able to provide relevant information about skeletal disorders, the quality and relevance of these responses varied widely, and ChatGPT 4.0 had the highest overall median score in each of the categories. Each of these chatbots displayed distinct limitations that included inconsistent, incomplete, or irrelevant responses, inappropriate utilization of lay sources in a professional context, a failure to take patient demographics or clinical context into account when providing recommendations, and an inability to consistently identify areas of uncertainty in the relevant literature. Careful consideration of both the opportunities and risks of current AI chatbots is needed to formulate guidelines for best practices for their use as source of information about skeletal health and biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈发布了新的文献求助10
1秒前
2秒前
直率向薇发布了新的文献求助10
3秒前
Jasper应助我爱达不溜采纳,获得10
3秒前
沙一汀绯闻女友完成签到,获得积分10
4秒前
cindyyunjie完成签到,获得积分10
4秒前
aka发布了新的文献求助10
5秒前
6秒前
虚拟的振家完成签到,获得积分10
8秒前
小赵过来一下完成签到,获得积分10
8秒前
DR发布了新的文献求助10
11秒前
11秒前
zhang完成签到,获得积分10
12秒前
12秒前
今后应助cc采纳,获得10
13秒前
酷炫芝麻完成签到,获得积分10
13秒前
17秒前
18秒前
zhang发布了新的文献求助10
19秒前
杨森omg发布了新的文献求助10
19秒前
cui完成签到,获得积分10
20秒前
杰king发布了新的文献求助10
25秒前
顾矜应助flysky120采纳,获得10
25秒前
sdvsd完成签到,获得积分10
27秒前
惜墨应助炙热芝采纳,获得30
28秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
25号底片应助科研通管家采纳,获得60
28秒前
Ava应助科研通管家采纳,获得20
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得20
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
李健应助科研通管家采纳,获得10
28秒前
天天快乐应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
xiaofei666应助科研通管家采纳,获得30
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102