A bearing remaining life prediction method under variable operating conditions based on cross-transformer fusioning segmented data cleaning

离群值 特征选择 模式识别(心理学) 预言 数据挖掘 特征向量 计算机科学 工程类 人工智能
作者
Dongxiao Hou,Jiahui Chen,Rongcai Cheng,Xue Hu,Peiming Shi
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:245: 110021-110021 被引量:3
标识
DOI:10.1016/j.ress.2024.110021
摘要

Bearing remaining useful life (RUL) prediction research based on deep learning mostly emphasizes model performance and effective feature vectors, overlooking different densities of outlier distributions in vibration signals at varying degradation stages. Moreover, forecasting models focus on capturing cross-time dependencies, ignoring the dependencies between different variables. To solve these problems, this paper proposes an unsupervised segmented data cleaning algorithm and a RUL prediction framework adaptable to variable operating conditions. The method consists of four steps: (1) Multi-domain feature extraction and selection establish a feature vector space reflecting degradation trends. (2) Segmented data cleaning divides degradation stages, using different penalty factors for outlier cleaning. (3) Cleaned vibration signals undergo a second round of multidomain feature engineering and degradation-stage division. (4) A two-stage Cross-Transformer model is used for RUL prediction. The method proposed has been validated on the prognostics and health management (PHM) bearing degradation dataset. In the constant condition prediction task, the root mean square error (RMSE) and mean absolute error (MAE) were improved to 1.88 and 5.78, respectively. In the variable condition prediction task, the proposed method outperformed existing methods, with an improvement of 59.10% in RMSE, demonstrating strong generalization performance and practical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的小霸王完成签到,获得积分10
刚刚
友好寻琴关注了科研通微信公众号
2秒前
3秒前
Lucas应助李麟采纳,获得10
4秒前
Carmen发布了新的文献求助30
5秒前
Hello应助霸道总裁旺德福采纳,获得10
5秒前
valorb完成签到,获得积分10
6秒前
研友_LkYKJZ完成签到,获得积分10
6秒前
jiajia完成签到,获得积分10
7秒前
白名单完成签到,获得积分10
7秒前
9秒前
1234完成签到,获得积分10
11秒前
11秒前
11秒前
传奇3应助张博采纳,获得10
12秒前
13秒前
淡定的含蕊完成签到 ,获得积分10
13秒前
kerrie完成签到,获得积分10
13秒前
seayoa发布了新的文献求助30
13秒前
小玲仔发布了新的文献求助10
13秒前
心随风飞应助千俞采纳,获得30
14秒前
zhangscience发布了新的文献求助10
14秒前
15秒前
16秒前
可燃冰完成签到,获得积分10
17秒前
17秒前
槐夏2466关注了科研通微信公众号
17秒前
ddttdt完成签到 ,获得积分10
18秒前
18秒前
tong完成签到,获得积分10
18秒前
笑点低的幼旋完成签到,获得积分10
18秒前
Jasper应助李麟采纳,获得10
19秒前
19秒前
kuyi发布了新的文献求助10
20秒前
CLubiy发布了新的文献求助30
20秒前
研友_VZG7GZ应助zhangscience采纳,获得10
21秒前
睡懒觉完成签到 ,获得积分10
21秒前
无敌风火轮完成签到,获得积分10
22秒前
抵澳报了完成签到,获得积分10
22秒前
ding应助bwh采纳,获得10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140831
求助须知:如何正确求助?哪些是违规求助? 2791790
关于积分的说明 7800310
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302350
科研通“疑难数据库(出版商)”最低求助积分说明 626516
版权声明 601210