Electric vehicle charging design: The factored action based reinforcement learning approach

强化学习 电动汽车 动作(物理) 计算机科学 工程类 汽车工程 人工智能 物理 功率(物理) 量子力学
作者
Van Binh Truong,Long Bao Le
出处
期刊:Applied Energy [Elsevier BV]
卷期号:359: 122737-122737 被引量:1
标识
DOI:10.1016/j.apenergy.2024.122737
摘要

Charging optimization design for Electric Vehicles (EV) is challenging because it must account for various uncertainties and design aspects such as random EVs' arrivals and departures, battery degradation, and transformer Loss of Life (LoL). Model-free reinforcement learning (RL) can be employed to tackle such the EV charging design where it does not require to explicitly model the environment dynamics and accurately predict relevant system parameters. However, the high complexity involved in conventional RL-based approaches usually limits its application to only small-scale EV charging settings, which is impractical. To overcome this limitation, we employ the factored action based RL method to transform the formulated Markov Decision Process (MDP). Then, we propose novel reward shaping and hybrid learning methods combining the Convolutional Neural Network (CNN) and Proximal Policy Optimization (PPO) algorithm to extract relevant features from high-dimension state space and efficiently solve the transformed MDP problem. Extensive numerical studies demonstrate that the proposed design can be used to control a charging station (CS) supporting a large number of EVs. Moreover, we show that the proposed framework greatly outperforms other baselines including single-agent and multi-agent RL based strategies and a heuristic power scheduling algorithm in terms of the achieved reward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的紫烟完成签到,获得积分10
刚刚
wdy111应助淡漠采纳,获得20
刚刚
刚刚
水吉2000完成签到,获得积分10
刚刚
1秒前
Owen应助zzzzz采纳,获得30
1秒前
CSPC001完成签到 ,获得积分10
2秒前
ForZero发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
乐乐应助鳗鱼灵寒采纳,获得10
4秒前
资山雁完成签到 ,获得积分10
5秒前
田様应助YixiaoWang采纳,获得10
5秒前
5秒前
ZJJ完成签到,获得积分20
5秒前
6秒前
大薯条完成签到 ,获得积分10
6秒前
one发布了新的文献求助10
6秒前
JoshuaChen发布了新的文献求助10
7秒前
锥子完成签到,获得积分10
7秒前
追风少侠李二狗完成签到,获得积分10
7秒前
8秒前
ZJJ发布了新的文献求助10
8秒前
CAOHOU应助nature采纳,获得20
8秒前
踹脸大妈发布了新的文献求助30
8秒前
Jenaloe发布了新的文献求助10
9秒前
巴斯光年发布了新的文献求助10
9秒前
完美世界应助科研通管家采纳,获得10
10秒前
water应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得20
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
NicotineZen完成签到,获得积分10
10秒前
kg发布了新的文献求助10
10秒前
dongjy应助科研通管家采纳,获得60
10秒前
Ava应助科研通管家采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582