A Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

计算机科学 系列(地层学) 时间序列 人工神经网络 人工智能 循环神经网络 细胞神经网络 模式识别(心理学) 数据挖掘 机器学习 古生物学 生物
作者
Kostas Tzoumpas,Aaron Estrada,Pietro Miraglio,Pietro Zambelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 31443-31460 被引量:4
标识
DOI:10.1109/access.2024.3369891
摘要

In the process of collecting data from sensors, several circumstances can affect their continuity and validity, resulting in alterations of the data or loss of information. Although classical methods of statistics, such as interpolation-like techniques, can be used to approximate the missing data in a time series, the recent developments in Deep Learning (DL) have given impetus to innovative and much more accurate forecasting techniques. In the present paper, we develop two DL models aimed at filling data gaps, for the specific case of internal temperature time series obtained from monitored apartments located in Bolzano, Italy. The DL models developed in the present work are based on the use of both pre- and post-gap data, and the exploitation of a correlated time series (the external temperature) in order to predict the target one (the internal temperature). The first model consists of two twin networks, each of which is a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory Neural Networks (LSTM), which are run in opposite directions on the time series data and whose predictions for the data gap are interpolated using a sigmoid function. The second DL model we developed, instead, is a single-network combination of CNN and Bidirectional LSTM (BiLSTM). Both our models succeed in capturing the fluctuating nature of the data and show good accuracy in reconstructing the target time series. The results they achieve, both in terms of error metrics and of R 2 -score, are better than those of a simpler DL architecture proposed in the literature for a similar scope, that we take as a baseline. Comparing our two models, the CNN-BiLSTM outperforms the CNN-LSTM, indicating a more effective way of combining past and future information, which is learnt from the data, than the explicit interpolation via sigmoid function of onward and backwards predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助不安的依风采纳,获得10
刚刚
licheng完成签到,获得积分10
1秒前
2秒前
2秒前
俭朴青烟发布了新的文献求助10
2秒前
整齐谷芹完成签到,获得积分10
3秒前
sdbz001完成签到,获得积分0
6秒前
伏城完成签到 ,获得积分10
6秒前
wz完成签到 ,获得积分10
6秒前
7秒前
8秒前
橙子完成签到,获得积分10
9秒前
9秒前
达达完成签到,获得积分10
9秒前
畅快的乐巧完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
14秒前
14秒前
不安的依风完成签到,获得积分20
16秒前
Owen应助现代的雪糕采纳,获得10
17秒前
17秒前
18秒前
胖莹完成签到 ,获得积分10
18秒前
19秒前
温婉的乞完成签到,获得积分20
19秒前
21秒前
嗯嗯完成签到 ,获得积分10
21秒前
米糖安完成签到,获得积分10
22秒前
木木发布了新的文献求助10
24秒前
27秒前
27秒前
Freya1528发布了新的文献求助30
28秒前
28秒前
stepha发布了新的文献求助10
30秒前
kevin完成签到 ,获得积分10
30秒前
善学以致用应助啦啦啦采纳,获得10
31秒前
量子星尘发布了新的文献求助10
32秒前
kyoko886发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547