A Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

计算机科学 系列(地层学) 时间序列 人工神经网络 人工智能 循环神经网络 细胞神经网络 模式识别(心理学) 数据挖掘 机器学习 古生物学 生物
作者
Kostas Tzoumpas,Aaron Estrada,Pietro Miraglio,Pietro Zambelli
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 31443-31460 被引量:4
标识
DOI:10.1109/access.2024.3369891
摘要

In the process of collecting data from sensors, several circumstances can affect their continuity and validity, resulting in alterations of the data or loss of information. Although classical methods of statistics, such as interpolation-like techniques, can be used to approximate the missing data in a time series, the recent developments in Deep Learning (DL) have given impetus to innovative and much more accurate forecasting techniques. In the present paper, we develop two DL models aimed at filling data gaps, for the specific case of internal temperature time series obtained from monitored apartments located in Bolzano, Italy. The DL models developed in the present work are based on the use of both pre- and post-gap data, and the exploitation of a correlated time series (the external temperature) in order to predict the target one (the internal temperature). The first model consists of two twin networks, each of which is a combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory Neural Networks (LSTM), which are run in opposite directions on the time series data and whose predictions for the data gap are interpolated using a sigmoid function. The second DL model we developed, instead, is a single-network combination of CNN and Bidirectional LSTM (BiLSTM). Both our models succeed in capturing the fluctuating nature of the data and show good accuracy in reconstructing the target time series. The results they achieve, both in terms of error metrics and of R 2 -score, are better than those of a simpler DL architecture proposed in the literature for a similar scope, that we take as a baseline. Comparing our two models, the CNN-BiLSTM outperforms the CNN-LSTM, indicating a more effective way of combining past and future information, which is learnt from the data, than the explicit interpolation via sigmoid function of onward and backwards predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kylin发布了新的文献求助10
刚刚
mokano发布了新的文献求助10
刚刚
柳觅夏发布了新的文献求助10
刚刚
1秒前
1秒前
浮云发布了新的文献求助10
2秒前
2秒前
FashionBoy应助奋斗的鱼采纳,获得10
3秒前
爱你的心完成签到 ,获得积分10
3秒前
yehata发布了新的文献求助10
3秒前
执着菀发布了新的文献求助10
4秒前
靓丽千筹发布了新的文献求助10
5秒前
Emper发布了新的文献求助10
6秒前
6秒前
海鲜汤完成签到 ,获得积分10
10秒前
bkagyin应助露露采纳,获得10
10秒前
施水蓝完成签到,获得积分10
11秒前
11秒前
11秒前
FAYE完成签到,获得积分10
11秒前
可乐龙猫完成签到,获得积分10
12秒前
12秒前
13秒前
科研通AI2S应助容与采纳,获得10
13秒前
bbw完成签到,获得积分10
15秒前
15秒前
大个应助星河采纳,获得10
15秒前
成就乘云发布了新的文献求助10
16秒前
万能图书馆应助汪小杰采纳,获得10
16秒前
英俊的铭应助笨笨筮采纳,获得10
17秒前
的的的的的完成签到,获得积分10
18秒前
奋斗的鱼发布了新的文献求助10
18秒前
靓丽千筹完成签到,获得积分10
18秒前
Emper发布了新的文献求助10
19秒前
19秒前
20秒前
赘婿应助怕黑的小凝采纳,获得10
20秒前
传奇3应助YY采纳,获得10
20秒前
22秒前
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542