Trajectory tracking control of autonomous vehicles based on Lagrangian neural network dynamics model

可解释性 人工神经网络 控制理论(社会学) 弹道 计算机科学 车辆动力学 稳健性(进化) 理论(学习稳定性) 控制工程 人工智能 控制(管理) 工程类 机器学习 生物化学 化学 物理 天文 汽车工程 基因
作者
Wei Yang,Yingfeng Cai,Xiaoyun Sun,Youguo He,Chaochun Yuan,Hai Wang,Long Chen
标识
DOI:10.1177/09544070231214333
摘要

The autonomous vehicles make decisions and plans based on the environmental perception and generate the target command of the control layer. The vehicle dynamics model is an important factor that affects the vehicle control. The dynamic mechanism model has strong interpretability and good stability. However, in extreme conditions, the model accuracy is reduced due to the tire entering the nonlinear region. The data-driven dynamic model achieves high modeling accuracy. However, due to the lack of physical constraints and rationality in the data-driven models, the interpretability and stability of the control is reduced, which in turn increases the unpredictable risk in the driving process. This paper innovatively proposes a deep Lagrangian neural network dynamics model (DeLaN) for autonomous vehicles based on the Lagrangian mechanics and uses a neural network to encode the differential equations. This not only retains the interpretability of the physical model but also makes full use of the learning ability and fitting ability of the neural network to effectively capture the complex dynamic characteristics of the vehicle. To improve the robustness of the control system, this work uses DeLaN as feed-forward control and preview error feedback control to form a closed loop of trajectory tracking control for autonomous vehicles. The experimental results show that the trajectory tracking error of the proposed DeLaN is significantly reduced, the yaw stability and comfort are significantly improved, good longitudinal and lateral cooperative control performance is achieved, and the physical rationality of the neural network is also improved. Therefore, the proposed DeLaN has important engineering application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跟我说晚安完成签到,获得积分20
刚刚
科研通AI5应助饱满的海秋采纳,获得10
1秒前
李爱国应助腼腆的馒头采纳,获得10
1秒前
积极的黑猫应助hmxh采纳,获得20
1秒前
秋子发布了新的文献求助10
1秒前
youyoumami发布了新的文献求助10
2秒前
Guo发布了新的文献求助10
2秒前
3秒前
3秒前
CipherSage应助小鹿5460采纳,获得10
3秒前
情怀应助另一种感觉采纳,获得10
3秒前
简单平蓝发布了新的文献求助10
4秒前
复杂含灵发布了新的文献求助10
4秒前
bkagyin应助panda采纳,获得10
4秒前
5秒前
小猫来啦完成签到,获得积分10
5秒前
自由笙应助敬老院N号采纳,获得10
5秒前
5秒前
chengzi完成签到,获得积分10
5秒前
6秒前
qin希望应助科研通管家采纳,获得10
7秒前
小二郎应助YMAO采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
IceyCNZ应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
jianglin6完成签到,获得积分20
7秒前
苏卿应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
科研进化中完成签到,获得积分10
8秒前
IceyCNZ应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280