RDGT: Enhancing Group Cognitive Diagnosis With Relation-Guided Dual-Side Graph Transformer

计算机科学 认知 变压器 人工智能 图形 关系(数据库) 机器学习 理论计算机科学 心理学 数据挖掘 物理 量子力学 电压 神经科学
作者
Xiaoshan Yu,Chuan Qin,D. Z. Shen,Haiping Ma,Le Zhang,Xingyi Zhang,Hengshu Zhu,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (7): 3429-3442 被引量:5
标识
DOI:10.1109/tkde.2024.3352640
摘要

Cognitive diagnosis has been widely recognized as a crucial task in the field of computational education, which is capable of learning the knowledge profiles of students and predicting their future exercise performance. Indeed, considerable research efforts have been made in this direction over the past decades. However, most of the existing studies only focus on individual-level diagnostic modeling, while the group-level cognitive diagnosis still lacks an in-depth exploration, which is more compatible with realistic collaborative learning environments. To this end, in this paper, we propose a R elation-guided D ual-side G raph T ransformer (RDGT) model for achieving effective group-level cognitive diagnosis. Specifically, we first construct the dual-side relation graphs (i.e., student-side and exercise-side) from the group-student-exercise heterogeneous interaction data for explicitly modeling associations between students and exercises, respectively. In particular, the edge weight between two nodes is defined based on the similarity of corresponding student-exercise interactions. Then, we introduce two relation-guided graph transformers to learn the representations of students and exercises by integrating the whole graph information, including both nodes and edge weights. Meanwhile, the inter-group information has been incorporated into the student-side relation graph to further enhance the representations of students. Along this line, we design a cognitive diagnosis module for learning the groups' proficiency in specific knowledge concepts, which includes an attention-based aggregation strategy to obtain the final group representation and a hybrid loss for optimizing the performance prediction of both group and student. Finally, extensive experiments on 5 real-world datasets clearly demonstrate the effectiveness of our model as well as some interesting findings (e.g., the representative groups and potential collaborations among students).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
科研通AI5应助ljl采纳,获得10
1秒前
1秒前
wowo完成签到,获得积分10
2秒前
天天快乐应助lk采纳,获得10
2秒前
siqiqiqi发布了新的文献求助10
3秒前
xgn发布了新的文献求助10
3秒前
FashionBoy应助沈吃吃采纳,获得10
4秒前
4秒前
4秒前
CodeCraft应助勤奋曼雁采纳,获得10
4秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
jiaozhiping发布了新的文献求助10
4秒前
苏杰发布了新的文献求助10
5秒前
皮皮皮卡球发布了新的文献求助100
5秒前
5秒前
由清涟发布了新的文献求助10
5秒前
5秒前
甜甜发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
xuanhaha发布了新的文献求助10
7秒前
伊绵好完成签到,获得积分10
7秒前
TRY发布了新的文献求助10
7秒前
安静幻枫完成签到,获得积分0
8秒前
8秒前
杳鸢给无奈的浩宇的求助进行了留言
9秒前
野花完成签到,获得积分10
9秒前
9秒前
英姑应助香辣鸡腿堡采纳,获得10
10秒前
张继妖发布了新的文献求助10
10秒前
在水一方应助Lee采纳,获得10
10秒前
11秒前
科研通AI5应助JUSTDOIT采纳,获得10
11秒前
CCCr发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515448
求助须知:如何正确求助?哪些是违规求助? 3097719
关于积分的说明 9236719
捐赠科研通 2792737
什么是DOI,文献DOI怎么找? 1532622
邀请新用户注册赠送积分活动 712201
科研通“疑难数据库(出版商)”最低求助积分说明 707160