Robust and Refined Salient Object Detection Based on Diffusion Model

稳健性(进化) 计算机科学 人工智能 对抗制 分类器(UML) 目标检测 突出 可微函数 模式识别(心理学) 计算机视觉 算法 数学 生物化学 基因 数学分析 化学
作者
Hanchen Ye,Yuyue Zhang,Xiaoli Zhao
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (24): 4962-4962
标识
DOI:10.3390/electronics12244962
摘要

Salient object detection (SOD) networks are vulnerable to adversarial attacks. As adversarial training is computationally expensive for SOD, existing defense methods instead adopt a noise-against-noise strategy that disrupts adversarial perturbation and restores the image either in input or feature space. However, their limited learning capacity and the need for network modifications limit their applicability. In recent years, the popular diffusion model coincides with the existing defense idea and exhibits excellent purification performance, but there still remains an accuracy gap between the saliency results generated from the purified images and the benign images. In this paper, we propose a Robust and Refined (RoRe) SOD defense framework based on the diffusion model to simultaneously achieve adversarial robustness as well as improved accuracy for benign and purified images. Our proposed RoRe defense consists of three modules: purification, adversarial detection, and refinement. The purification module leverages the powerful generation capability of the diffusion model to purify perturbed input images to achieve robustness. The adversarial detection module utilizes the guidance classifier in the diffusion model for multi-step voting classification. By combining this classifier with a similarity condition, precise adversarial detection can be achieved, providing the possibility of regaining the original accuracy for benign images. The refinement module uses a simple and effective UNet to enhance the accuracy of purified images. The experiments demonstrate that RoRe achieves superior robustness over state-of-the-art methods while maintaining high accuracy for benign images. Moreover, RoRe shows good results against backward pass differentiable approximation (BPDA) attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
GillianRan发布了新的文献求助30
4秒前
郭富城完成签到 ,获得积分10
6秒前
haojie完成签到,获得积分10
6秒前
pioneer完成签到,获得积分20
6秒前
lehha完成签到,获得积分10
7秒前
zjy发布了新的文献求助10
7秒前
tianqing完成签到,获得积分10
9秒前
研究牲完成签到 ,获得积分10
9秒前
10秒前
大爱仙尊完成签到 ,获得积分10
10秒前
热爱和平的理想主义者完成签到,获得积分10
11秒前
jphu完成签到,获得积分10
12秒前
12秒前
12秒前
Candy应助Ahsan采纳,获得30
12秒前
冰魂应助Ahsan采纳,获得10
12秒前
zzz完成签到,获得积分10
13秒前
科研通AI5应助RENAISSANCE111采纳,获得30
14秒前
郁水桃完成签到,获得积分10
14秒前
15秒前
herschelwu完成签到,获得积分10
16秒前
虚幻靖易完成签到,获得积分10
16秒前
17秒前
18秒前
科研通AI5应助sudaxia100采纳,获得10
18秒前
18秒前
19秒前
20秒前
Akim应助myyyy采纳,获得10
20秒前
ding应助772119681采纳,获得10
21秒前
ZZC发布了新的文献求助10
23秒前
23秒前
24秒前
黄世龙完成签到,获得积分10
24秒前
kkdkg发布了新的文献求助10
26秒前
斯文芸发布了新的文献求助10
26秒前
26秒前
nannan驳回了顾矜应助
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Izeltabart tapatansine - AdisInsight 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775230
求助须知:如何正确求助?哪些是违规求助? 3320920
关于积分的说明 10202587
捐赠科研通 3035792
什么是DOI,文献DOI怎么找? 1665703
邀请新用户注册赠送积分活动 797102
科研通“疑难数据库(出版商)”最低求助积分说明 757700