Robust and Refined Salient Object Detection Based on Diffusion Model

稳健性(进化) 计算机科学 人工智能 对抗制 分类器(UML) 目标检测 突出 可微函数 模式识别(心理学) 计算机视觉 算法 数学 数学分析 生物化学 化学 基因
作者
Hanchen Ye,Yuyue Zhang,Xiaoli Zhao
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (24): 4962-4962
标识
DOI:10.3390/electronics12244962
摘要

Salient object detection (SOD) networks are vulnerable to adversarial attacks. As adversarial training is computationally expensive for SOD, existing defense methods instead adopt a noise-against-noise strategy that disrupts adversarial perturbation and restores the image either in input or feature space. However, their limited learning capacity and the need for network modifications limit their applicability. In recent years, the popular diffusion model coincides with the existing defense idea and exhibits excellent purification performance, but there still remains an accuracy gap between the saliency results generated from the purified images and the benign images. In this paper, we propose a Robust and Refined (RoRe) SOD defense framework based on the diffusion model to simultaneously achieve adversarial robustness as well as improved accuracy for benign and purified images. Our proposed RoRe defense consists of three modules: purification, adversarial detection, and refinement. The purification module leverages the powerful generation capability of the diffusion model to purify perturbed input images to achieve robustness. The adversarial detection module utilizes the guidance classifier in the diffusion model for multi-step voting classification. By combining this classifier with a similarity condition, precise adversarial detection can be achieved, providing the possibility of regaining the original accuracy for benign images. The refinement module uses a simple and effective UNet to enhance the accuracy of purified images. The experiments demonstrate that RoRe achieves superior robustness over state-of-the-art methods while maintaining high accuracy for benign images. Moreover, RoRe shows good results against backward pass differentiable approximation (BPDA) attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助沐沐采纳,获得10
1秒前
1秒前
2秒前
3秒前
3秒前
麻雀完成签到,获得积分10
3秒前
4秒前
斯文败类应助三岁就很帅采纳,获得10
5秒前
5秒前
小刀完成签到,获得积分10
6秒前
6秒前
陈永伟完成签到,获得积分10
6秒前
6秒前
麻雀发布了新的文献求助10
7秒前
闪闪寒云完成签到 ,获得积分10
7秒前
什么也难不倒我完成签到 ,获得积分10
7秒前
zhang发布了新的文献求助10
7秒前
危机的碧菡完成签到,获得积分10
7秒前
7秒前
田様应助徐徐俊采纳,获得10
7秒前
今后应助天天开心采纳,获得10
9秒前
韦灵珊发布了新的文献求助10
9秒前
10秒前
善学以致用应助HCL采纳,获得10
10秒前
11秒前
脑洞疼应助㊣㊣采纳,获得10
11秒前
核桃发布了新的文献求助10
11秒前
雾霭迷茫发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助50
12秒前
明亮安双完成签到,获得积分10
13秒前
饱满青完成签到 ,获得积分10
14秒前
15秒前
15秒前
星希完成签到 ,获得积分10
15秒前
苏锦霖发布了新的文献求助10
17秒前
CC完成签到,获得积分10
17秒前
18秒前
19秒前
CodeCraft应助韦灵珊采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5140833
求助须知:如何正确求助?哪些是违规求助? 4339316
关于积分的说明 13515046
捐赠科研通 4178957
什么是DOI,文献DOI怎么找? 2291500
邀请新用户注册赠送积分活动 1292177
关于科研通互助平台的介绍 1234559