Robust and Refined Salient Object Detection Based on Diffusion Model

稳健性(进化) 计算机科学 人工智能 对抗制 分类器(UML) 目标检测 突出 可微函数 模式识别(心理学) 计算机视觉 算法 数学 数学分析 生物化学 化学 基因
作者
Hanchen Ye,Yuyue Zhang,Xiaoli Zhao
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (24): 4962-4962
标识
DOI:10.3390/electronics12244962
摘要

Salient object detection (SOD) networks are vulnerable to adversarial attacks. As adversarial training is computationally expensive for SOD, existing defense methods instead adopt a noise-against-noise strategy that disrupts adversarial perturbation and restores the image either in input or feature space. However, their limited learning capacity and the need for network modifications limit their applicability. In recent years, the popular diffusion model coincides with the existing defense idea and exhibits excellent purification performance, but there still remains an accuracy gap between the saliency results generated from the purified images and the benign images. In this paper, we propose a Robust and Refined (RoRe) SOD defense framework based on the diffusion model to simultaneously achieve adversarial robustness as well as improved accuracy for benign and purified images. Our proposed RoRe defense consists of three modules: purification, adversarial detection, and refinement. The purification module leverages the powerful generation capability of the diffusion model to purify perturbed input images to achieve robustness. The adversarial detection module utilizes the guidance classifier in the diffusion model for multi-step voting classification. By combining this classifier with a similarity condition, precise adversarial detection can be achieved, providing the possibility of regaining the original accuracy for benign images. The refinement module uses a simple and effective UNet to enhance the accuracy of purified images. The experiments demonstrate that RoRe achieves superior robustness over state-of-the-art methods while maintaining high accuracy for benign images. Moreover, RoRe shows good results against backward pass differentiable approximation (BPDA) attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锦江完成签到,获得积分10
7秒前
yangsi完成签到 ,获得积分10
7秒前
JamesPei应助lyn采纳,获得10
7秒前
聖璕完成签到,获得积分10
11秒前
健康的修洁完成签到 ,获得积分20
16秒前
侃侃完成签到,获得积分10
17秒前
科目三应助潇潇雨歇采纳,获得10
18秒前
英姑应助积极的明天采纳,获得10
22秒前
666应助牧鱼采纳,获得10
23秒前
yyy完成签到,获得积分10
25秒前
cherish完成签到,获得积分10
28秒前
29秒前
儒雅沛蓝完成签到,获得积分10
31秒前
不能说的秘密完成签到,获得积分10
36秒前
勤奋笑卉完成签到 ,获得积分10
36秒前
HOPKINSON完成签到,获得积分10
39秒前
aaaa完成签到,获得积分10
39秒前
lanlan完成签到 ,获得积分10
39秒前
大个应助Jenny采纳,获得10
39秒前
大模型应助潇潇雨歇采纳,获得20
42秒前
sssssssssss完成签到,获得积分10
43秒前
Julia完成签到,获得积分10
44秒前
45秒前
47秒前
Stove完成签到,获得积分10
48秒前
atom完成签到,获得积分10
49秒前
50秒前
qiang发布了新的文献求助10
50秒前
satan9发布了新的文献求助10
52秒前
liuyf完成签到 ,获得积分10
53秒前
Akim应助潇潇雨歇采纳,获得20
57秒前
杜兰特发布了新的文献求助10
57秒前
58秒前
Xiaoxiao应助yyauthor采纳,获得20
59秒前
pppsci完成签到,获得积分10
1分钟前
jjj应助qiang采纳,获得20
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
凡迪亚比应助科研通管家采纳,获得30
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351