Robust and Refined Salient Object Detection Based on Diffusion Model

稳健性(进化) 计算机科学 人工智能 对抗制 分类器(UML) 目标检测 突出 可微函数 模式识别(心理学) 计算机视觉 算法 数学 数学分析 生物化学 化学 基因
作者
Hanchen Ye,Yuyue Zhang,Xiaoli Zhao
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (24): 4962-4962
标识
DOI:10.3390/electronics12244962
摘要

Salient object detection (SOD) networks are vulnerable to adversarial attacks. As adversarial training is computationally expensive for SOD, existing defense methods instead adopt a noise-against-noise strategy that disrupts adversarial perturbation and restores the image either in input or feature space. However, their limited learning capacity and the need for network modifications limit their applicability. In recent years, the popular diffusion model coincides with the existing defense idea and exhibits excellent purification performance, but there still remains an accuracy gap between the saliency results generated from the purified images and the benign images. In this paper, we propose a Robust and Refined (RoRe) SOD defense framework based on the diffusion model to simultaneously achieve adversarial robustness as well as improved accuracy for benign and purified images. Our proposed RoRe defense consists of three modules: purification, adversarial detection, and refinement. The purification module leverages the powerful generation capability of the diffusion model to purify perturbed input images to achieve robustness. The adversarial detection module utilizes the guidance classifier in the diffusion model for multi-step voting classification. By combining this classifier with a similarity condition, precise adversarial detection can be achieved, providing the possibility of regaining the original accuracy for benign images. The refinement module uses a simple and effective UNet to enhance the accuracy of purified images. The experiments demonstrate that RoRe achieves superior robustness over state-of-the-art methods while maintaining high accuracy for benign images. Moreover, RoRe shows good results against backward pass differentiable approximation (BPDA) attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助shea采纳,获得10
刚刚
Hello应助鲤鱼野狼采纳,获得10
刚刚
刚刚
1秒前
chenchen发布了新的文献求助10
1秒前
叶伟帮发布了新的文献求助10
2秒前
2秒前
易水寒完成签到,获得积分10
2秒前
2秒前
语亦菲扬921完成签到,获得积分10
2秒前
utgu完成签到,获得积分10
2秒前
珊珊4532发布了新的文献求助10
2秒前
3秒前
脑洞疼应助积极的初南采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI5应助maomao采纳,获得30
4秒前
思源应助yinqueshi采纳,获得10
4秒前
Lucas应助纯真电源采纳,获得10
4秒前
nove999完成签到 ,获得积分10
4秒前
追梦发布了新的文献求助10
4秒前
文献狗发布了新的文献求助10
5秒前
凶狠的期待完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
Acer完成签到 ,获得积分10
7秒前
咚咚发布了新的文献求助10
7秒前
7秒前
7秒前
小薛完成签到,获得积分20
9秒前
9秒前
DNNNNNN发布了新的文献求助10
9秒前
9秒前
ShaLi123完成签到,获得积分10
9秒前
科目三应助CJY采纳,获得10
9秒前
chenchen完成签到,获得积分20
9秒前
坚定惜梦发布了新的文献求助10
10秒前
oldblack完成签到,获得积分10
10秒前
讨厌胡萝卜完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355