Postoperative delirium prediction after cardiac surgery using machine learning models

谵妄 接收机工作特性 医学 围手术期 心脏外科 支持向量机 机器学习 随机森林 人工智能 内科学 外科 重症监护医学 计算机科学
作者
Tan Yang,Hai Yang,Yan Liu,Xiao Liu,Yijie Ding,Run Li,An-Qiong Mao,Yue Huang,Xiaoliang Li,Ying Zhang,Fengxu Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107818-107818 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107818
摘要

Postoperative delirium (POD) is a common postoperative complication in elderly patients, especially those undergoing cardiac surgery, which seriously affects the short- and long-term prognosis of patients. Early identification of risk factors for the development of POD can help improve the perioperative management of surgical patients. In the present study, five machine learning models were developed to predict patients at high risk of delirium after cardiac surgery and their performance was compared. A total of 367 patients who underwent cardiac surgery were retrospectively included in this study. Using single-factor analysis, 21 risk factors for POD were selected for inclusion in machine learning. The dataset was divided using 10-fold cross-validation for model training and testing. Five machine learning models (random forest (RF), support vector machine (SVM), radial based kernel neural network (RBFNN), K-nearest neighbour (KNN), and Kernel ridge regression (KRR)) were compared using area under the receiver operating characteristic curve (AUC‐ROC), accuracy (ACC), sensitivity (SN), specificity (SPE), and Matthews coefficient (MCC). Among 367 patients, 105 patients developed POD, the incidence of delirium was 28.6 %. Among the five ML models, RF had the best performance in ACC (87.99 %), SN (69.27 %), SPE (95.38 %), MCC (70.00 %) and AUC (0.9202), which was far superior to the other four models. Delirium is common in patients after cardiac surgery. This analysis confirms the importance of the computational ML models in predicting the occurrence of delirium after cardiac surgery, especially the outstanding performance of the RF model, which has practical clinical applications for early identification of patients at risk of developing POD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助ref采纳,获得10
刚刚
bella发布了新的文献求助50
1秒前
hangongyishan完成签到,获得积分10
2秒前
怨气冲天完成签到 ,获得积分10
2秒前
4秒前
英俊的铭应助搞怪慕凝采纳,获得10
4秒前
多多完成签到,获得积分20
4秒前
优乐美完成签到 ,获得积分10
5秒前
善良的梦槐应助Physio采纳,获得100
6秒前
科目三应助探索001采纳,获得10
6秒前
7秒前
hao发布了新的文献求助10
8秒前
10秒前
10秒前
兴奋静珊发布了新的文献求助10
11秒前
勤劳的沛山完成签到,获得积分10
11秒前
打打应助Delia采纳,获得10
11秒前
12秒前
沫s发布了新的文献求助10
12秒前
大橙子完成签到 ,获得积分10
14秒前
爱笑的莫茗完成签到,获得积分10
15秒前
搞怪慕凝发布了新的文献求助10
16秒前
科研怪兽发布了新的文献求助10
16秒前
zzzzz完成签到 ,获得积分10
18秒前
lili发布了新的文献求助10
18秒前
无聊的听寒完成签到 ,获得积分10
18秒前
19秒前
20秒前
Eric完成签到,获得积分10
20秒前
Johnpick应助坚强百褶裙采纳,获得10
21秒前
22秒前
开心的汽车完成签到,获得积分10
22秒前
23秒前
136542发布了新的文献求助10
23秒前
23秒前
搞怪慕凝完成签到,获得积分20
23秒前
科研通AI5应助山月采纳,获得10
25秒前
英俊的铭应助正直纸鹤采纳,获得10
25秒前
ljy123456完成签到,获得积分10
26秒前
老迟到的翠容完成签到,获得积分10
27秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3708104
求助须知:如何正确求助?哪些是违规求助? 3256592
关于积分的说明 9901149
捐赠科研通 2969105
什么是DOI,文献DOI怎么找? 1628367
邀请新用户注册赠送积分活动 772115
科研通“疑难数据库(出版商)”最低求助积分说明 743639