Rapid sand filtration for <10 μm-sized microplastic removal in tap water treatment: Efficiency and adsorption mechanisms

反冲洗 吸附 水处理 化学 过滤(数学) 微塑料 堵塞 环境工程 自来水 环境科学 环境化学 制浆造纸工业 统计 工程类 历史 考古 有机化学 机械工程 入口 数学
作者
Kassim Chabi,Jianguo Li,Chengsong Ye,Claude Kiki,Xinyan Xiao,Xi Li,Lizheng Guo,Mahmoud Gad,Mingbao Feng,Xin Yu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 169074-169074 被引量:8
标识
DOI:10.1016/j.scitotenv.2023.169074
摘要

The omnipresence of microplastics (MPs) in potable water has become a major concern due to their potential disruptive effect on human health. Therefore, the effective removal of MPs in drinking water is essential for life preservation. In this study, tap water containing microplastic <10 μm in size was treated using constructed pilot-scale rapid sand filtration (RSF) system to investigate the removal efficiency and the mechanisms involved. The results show that the RSF provides significant capacity for the removal and immobilization of MPs < 10 μm diameter (achieving 98 %). Results showed that silicate sand reacted with MPs through a cooperative assembly process, which mainly involved interception, trapping, entanglement, and adsorption. The MPs were quantified by Flow cytometry instrument. A kinetics study underlined the pivotal role of physio-chemisorption in the removal process. MP particles smaller than absorbents, saturation of adsorbents, and reactor hydrodynamics were identified as limiting factors, which were alleviated by backwashing. Backwashing promoted the desorption of up to 97 % MPs, conducive for adsorbent active site regeneration. These findings revealed the critical role of RSF and the importance of backwashing in removing MPs. Understanding the mechanisms involved in removing microplastics from drinking water is crucial in developing more efficient strategies to eliminate them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助ken131采纳,获得10
刚刚
1秒前
大方夏寒完成签到,获得积分10
2秒前
希望天下0贩的0应助周助采纳,获得10
2秒前
3秒前
贰陆发布了新的文献求助10
4秒前
KongShan完成签到,获得积分10
4秒前
4秒前
儒雅的梦芝完成签到,获得积分10
4秒前
GAO发布了新的文献求助10
5秒前
张慧仪完成签到 ,获得积分20
6秒前
6秒前
哇哈哈发布了新的文献求助10
7秒前
六子发布了新的文献求助10
9秒前
9秒前
SciGPT应助杨青月采纳,获得10
10秒前
10秒前
Owen应助扶手采纳,获得10
10秒前
11秒前
lily完成签到,获得积分10
11秒前
可靠烧鹅完成签到,获得积分20
12秒前
来了来了完成签到,获得积分10
12秒前
华66发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
skyer1完成签到,获得积分10
15秒前
memory发布了新的文献求助10
15秒前
今后应助自信鞯采纳,获得10
16秒前
科目三应助enndyou采纳,获得10
16秒前
17秒前
狮子座完成签到,获得积分10
18秒前
18秒前
传奇3应助Hedy采纳,获得10
19秒前
爱静静应助Hedy采纳,获得10
19秒前
111966完成签到,获得积分10
19秒前
21秒前
李爱国应助Flynut采纳,获得10
21秒前
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553933
求助须知:如何正确求助?哪些是违规求助? 3129728
关于积分的说明 9384042
捐赠科研通 2828848
什么是DOI,文献DOI怎么找? 1555246
邀请新用户注册赠送积分活动 725940
科研通“疑难数据库(出版商)”最低求助积分说明 715331