重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

From coarse to fine: Enhancing multi-document summarization with multi-granularity relationship-based extractor

计算机科学 自动汇总 粒度 判决 冗余(工程) 图形 情报检索 可读性 集合(抽象数据类型) 数据挖掘 人工智能 理论计算机科学 操作系统 程序设计语言
作者
Ming Zhang,J.P. Lu,Jiahao Yang,Jun Zhou,Meilin Wan,Xuejun Zhang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103696-103696 被引量:5
标识
DOI:10.1016/j.ipm.2024.103696
摘要

Multi-Document Summarization (MDS) is a challenging task due to the fact that multiple documents not only have extremely long inputs but may also be overlapping, complementary, or contradictory to each other. In this paper, we propose to capture complex cross-document interactions to handle lengthy inputs for better multi-document summarization. Specifically, we present MDS-MGRE, a coarse-to-fine MDS framework that introduces Multi-Granularity Relationships into an Extract-then-summarize pipeline. In the coarse-grained stage, multi-granularity embedding, heterogeneous graph construction, and MGRExtractor work together to convert redundant multi-documents into compact meta-documents. We first utilize pre-trained language model BERT to obtain semantically rich embeddings for documents at different granularities, including documents, paragraphs, sentence-sets, and sentences. Then, we construct a heterogeneous graph with 4 types of nodes (document nodes, paragraph nodes, sentence-set nodes, and sentence nodes) and corresponding connecting edges to model rich document relationships. Furthermore, we propose a novel Multi-Granularity Relationship-based Extractor (MGRExtractor) to produce meta-documents by efficiently pruning heterogeneous graphs. More precisely, it consists of 4 main modules: noise removal, redundancy removal, multi-granularity scoring, and sentence-set selection. In the fine-grained stage, we employ the large configuration of BART as our abstractive summarizer to generate system summaries from the extracted meta-documents. Experimental results on two benchmark datasets show that our framework significantly outperforms strong baselines with comparable parameters, and slightly underperforms methods with a maximum encoding length of 16,384 tokens. For Multi-News and WCEP, automatic evaluation results show that MDS-MGRE achieves an average performance improvement of 1.75% and 8.77% compared to the state-of-the-art systems with comparable parameters, respectively. Such positive results demonstrate the benefits of generating high-quality meta-documents to enhance MDS by modeling rich document relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达达完成签到,获得积分10
刚刚
赘婿应助yuhan采纳,获得10
1秒前
1秒前
乐乐应助何松采纳,获得10
1秒前
stella完成签到 ,获得积分10
1秒前
Akim应助勤奋的凌翠采纳,获得10
2秒前
科研通AI6应助标致金毛采纳,获得10
2秒前
猪嗝铁铁发布了新的文献求助20
2秒前
科研通AI6应助乔安娜采纳,获得30
2秒前
伶俐绿柏完成签到 ,获得积分10
3秒前
3秒前
tsuki发布了新的文献求助10
3秒前
历了浮沉完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
4秒前
冬天发布了新的文献求助10
4秒前
OKOK发布了新的文献求助10
4秒前
慕青应助温婉的初南采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
mao完成签到,获得积分10
6秒前
斯文败类应助jim采纳,获得30
6秒前
XO完成签到,获得积分10
6秒前
大模型应助三硝基甲苯采纳,获得10
8秒前
8秒前
可爱的函函应助123采纳,获得10
9秒前
Orange应助坦率灵槐采纳,获得10
9秒前
华仔应助魔幻擎宇采纳,获得10
9秒前
GuangboXia发布了新的文献求助10
9秒前
喜之郎发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
薯条完成签到,获得积分10
11秒前
LJJZZX完成签到,获得积分10
11秒前
张思甜完成签到,获得积分10
12秒前
幽默尔蓝发布了新的文献求助10
12秒前
彭于晏应助温婉的篮球采纳,获得10
12秒前
再慕完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516