清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

From coarse to fine: Enhancing multi-document summarization with multi-granularity relationship-based extractor

计算机科学 自动汇总 粒度 判决 冗余(工程) 图形 情报检索 可读性 集合(抽象数据类型) 数据挖掘 人工智能 理论计算机科学 程序设计语言 操作系统
作者
Ming Zhang,Jie Lu,Jiahao Yang,Jun Zhou,Meilin Wan,Xuejun Zhang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103696-103696 被引量:1
标识
DOI:10.1016/j.ipm.2024.103696
摘要

Multi-Document Summarization (MDS) is a challenging task due to the fact that multiple documents not only have extremely long inputs but may also be overlapping, complementary, or contradictory to each other. In this paper, we propose to capture complex cross-document interactions to handle lengthy inputs for better multi-document summarization. Specifically, we present MDS-MGRE, a coarse-to-fine MDS framework that introduces Multi-Granularity Relationships into an Extract-then-summarize pipeline. In the coarse-grained stage, multi-granularity embedding, heterogeneous graph construction, and MGRExtractor work together to convert redundant multi-documents into compact meta-documents. We first utilize pre-trained language model BERT to obtain semantically rich embeddings for documents at different granularities, including documents, paragraphs, sentence-sets, and sentences. Then, we construct a heterogeneous graph with 4 types of nodes (document nodes, paragraph nodes, sentence-set nodes, and sentence nodes) and corresponding connecting edges to model rich document relationships. Furthermore, we propose a novel Multi-Granularity Relationship-based Extractor (MGRExtractor) to produce meta-documents by efficiently pruning heterogeneous graphs. More precisely, it consists of 4 main modules: noise removal, redundancy removal, multi-granularity scoring, and sentence-set selection. In the fine-grained stage, we employ the large configuration of BART as our abstractive summarizer to generate system summaries from the extracted meta-documents. Experimental results on two benchmark datasets show that our framework significantly outperforms strong baselines with comparable parameters, and slightly underperforms methods with a maximum encoding length of 16,384 tokens. For Multi-News and WCEP, automatic evaluation results show that MDS-MGRE achieves an average performance improvement of 1.75% and 8.77% compared to the state-of-the-art systems with comparable parameters, respectively. Such positive results demonstrate the benefits of generating high-quality meta-documents to enhance MDS by modeling rich document relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马111完成签到,获得积分10
3秒前
小马111发布了新的文献求助10
10秒前
56秒前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
1分钟前
winne发布了新的文献求助10
1分钟前
实力不允许完成签到 ,获得积分10
1分钟前
xanderxue完成签到,获得积分10
2分钟前
边曦完成签到 ,获得积分10
2分钟前
悦耳十三发布了新的文献求助50
2分钟前
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
一杯茶发布了新的文献求助10
3分钟前
一杯茶发布了新的文献求助10
3分钟前
先锋完成签到 ,获得积分10
4分钟前
奶糖喵完成签到 ,获得积分10
4分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
大气寄松发布了新的文献求助10
5分钟前
随机子应助一杯茶采纳,获得10
5分钟前
5分钟前
魏白晴完成签到,获得积分10
6分钟前
川藏客完成签到 ,获得积分10
6分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
Eatanicecube完成签到,获得积分10
8分钟前
juan完成签到 ,获得积分10
8分钟前
Raunio完成签到,获得积分10
9分钟前
lhy12345完成签到,获得积分10
9分钟前
咳咳哼完成签到,获得积分10
9分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921881
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438