From coarse to fine: Enhancing multi-document summarization with multi-granularity relationship-based extractor

计算机科学 自动汇总 粒度 判决 冗余(工程) 图形 情报检索 可读性 集合(抽象数据类型) 数据挖掘 人工智能 理论计算机科学 程序设计语言 操作系统
作者
Ming Zhang,Jie Lu,Jiahao Yang,Jun Zhou,Meilin Wan,Xuejun Zhang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (3): 103696-103696 被引量:1
标识
DOI:10.1016/j.ipm.2024.103696
摘要

Multi-Document Summarization (MDS) is a challenging task due to the fact that multiple documents not only have extremely long inputs but may also be overlapping, complementary, or contradictory to each other. In this paper, we propose to capture complex cross-document interactions to handle lengthy inputs for better multi-document summarization. Specifically, we present MDS-MGRE, a coarse-to-fine MDS framework that introduces Multi-Granularity Relationships into an Extract-then-summarize pipeline. In the coarse-grained stage, multi-granularity embedding, heterogeneous graph construction, and MGRExtractor work together to convert redundant multi-documents into compact meta-documents. We first utilize pre-trained language model BERT to obtain semantically rich embeddings for documents at different granularities, including documents, paragraphs, sentence-sets, and sentences. Then, we construct a heterogeneous graph with 4 types of nodes (document nodes, paragraph nodes, sentence-set nodes, and sentence nodes) and corresponding connecting edges to model rich document relationships. Furthermore, we propose a novel Multi-Granularity Relationship-based Extractor (MGRExtractor) to produce meta-documents by efficiently pruning heterogeneous graphs. More precisely, it consists of 4 main modules: noise removal, redundancy removal, multi-granularity scoring, and sentence-set selection. In the fine-grained stage, we employ the large configuration of BART as our abstractive summarizer to generate system summaries from the extracted meta-documents. Experimental results on two benchmark datasets show that our framework significantly outperforms strong baselines with comparable parameters, and slightly underperforms methods with a maximum encoding length of 16,384 tokens. For Multi-News and WCEP, automatic evaluation results show that MDS-MGRE achieves an average performance improvement of 1.75% and 8.77% compared to the state-of-the-art systems with comparable parameters, respectively. Such positive results demonstrate the benefits of generating high-quality meta-documents to enhance MDS by modeling rich document relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hx发布了新的文献求助10
2秒前
fdscat发布了新的文献求助10
3秒前
周zzzzzz完成签到,获得积分10
3秒前
4秒前
伯赏人杰发布了新的文献求助10
4秒前
4秒前
充电宝应助小大夫采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
fwx1997发布了新的文献求助10
8秒前
9秒前
英姑应助嗯嗯采纳,获得10
9秒前
flance完成签到 ,获得积分10
9秒前
白之玉发布了新的文献求助10
10秒前
SciGPT应助任无施采纳,获得80
11秒前
12秒前
隐形曼青应助fdscat采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
希兮九条叶完成签到,获得积分10
14秒前
16秒前
21秒前
国服第一YWF完成签到,获得积分10
23秒前
25秒前
冷酷从云发布了新的文献求助10
26秒前
田様应助任性的皮皮虾采纳,获得10
28秒前
28秒前
不想改格式了完成签到,获得积分10
28秒前
于某人发布了新的文献求助10
28秒前
29秒前
小蘑菇应助RC_Wang采纳,获得10
30秒前
老阎应助ikun采纳,获得30
30秒前
却道天凉好个秋完成签到,获得积分20
31秒前
31秒前
SG完成签到,获得积分10
33秒前
34秒前
34秒前
36秒前
33完成签到,获得积分10
38秒前
于某人完成签到,获得积分10
38秒前
今后应助liuzengzhang666采纳,获得10
38秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021