From coarse to fine: Enhancing multi-document summarization with multi-granularity relationship-based extractor

计算机科学 自动汇总 粒度 判决 冗余(工程) 图形 情报检索 可读性 集合(抽象数据类型) 数据挖掘 人工智能 理论计算机科学 程序设计语言 操作系统
作者
Ming Zhang,J.P. Lu,Jiahao Yang,Jun Zhou,Meilin Wan,Xuejun Zhang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:61 (3): 103696-103696 被引量:5
标识
DOI:10.1016/j.ipm.2024.103696
摘要

Multi-Document Summarization (MDS) is a challenging task due to the fact that multiple documents not only have extremely long inputs but may also be overlapping, complementary, or contradictory to each other. In this paper, we propose to capture complex cross-document interactions to handle lengthy inputs for better multi-document summarization. Specifically, we present MDS-MGRE, a coarse-to-fine MDS framework that introduces Multi-Granularity Relationships into an Extract-then-summarize pipeline. In the coarse-grained stage, multi-granularity embedding, heterogeneous graph construction, and MGRExtractor work together to convert redundant multi-documents into compact meta-documents. We first utilize pre-trained language model BERT to obtain semantically rich embeddings for documents at different granularities, including documents, paragraphs, sentence-sets, and sentences. Then, we construct a heterogeneous graph with 4 types of nodes (document nodes, paragraph nodes, sentence-set nodes, and sentence nodes) and corresponding connecting edges to model rich document relationships. Furthermore, we propose a novel Multi-Granularity Relationship-based Extractor (MGRExtractor) to produce meta-documents by efficiently pruning heterogeneous graphs. More precisely, it consists of 4 main modules: noise removal, redundancy removal, multi-granularity scoring, and sentence-set selection. In the fine-grained stage, we employ the large configuration of BART as our abstractive summarizer to generate system summaries from the extracted meta-documents. Experimental results on two benchmark datasets show that our framework significantly outperforms strong baselines with comparable parameters, and slightly underperforms methods with a maximum encoding length of 16,384 tokens. For Multi-News and WCEP, automatic evaluation results show that MDS-MGRE achieves an average performance improvement of 1.75% and 8.77% compared to the state-of-the-art systems with comparable parameters, respectively. Such positive results demonstrate the benefits of generating high-quality meta-documents to enhance MDS by modeling rich document relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YYY完成签到,获得积分10
2秒前
2秒前
斯文败类应助文艺天奇采纳,获得10
2秒前
Goal完成签到,获得积分10
2秒前
yimeng发布了新的文献求助10
4秒前
sunhz发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
乃禾完成签到 ,获得积分10
5秒前
5秒前
毛月月完成签到,获得积分10
5秒前
虚心的以晴完成签到,获得积分10
5秒前
gg完成签到,获得积分10
6秒前
奶茶菌完成签到,获得积分10
6秒前
英俊的铭应助woo采纳,获得10
6秒前
慕青应助饱满的毛巾采纳,获得10
6秒前
6秒前
6秒前
思源应助sci_zt采纳,获得10
6秒前
思源应助开心青旋采纳,获得10
7秒前
8秒前
8秒前
乔乔兔发布了新的文献求助10
8秒前
Mengjie发布了新的文献求助10
8秒前
信号未连接应助多余采纳,获得10
8秒前
8秒前
迅速的不正完成签到,获得积分10
9秒前
橘子会武功完成签到,获得积分10
9秒前
9秒前
10秒前
迷路的猎豹完成签到,获得积分20
11秒前
pai先生发布了新的文献求助10
11秒前
12秒前
丘比特应助852采纳,获得10
12秒前
SCI发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
wh发布了新的文献求助10
14秒前
woo完成签到,获得积分10
14秒前
无花果应助三三磊采纳,获得10
14秒前
NexusExplorer应助贪玩夏柳采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709779
求助须知:如何正确求助?哪些是违规求助? 5196481
关于积分的说明 15258245
捐赠科研通 4862424
什么是DOI,文献DOI怎么找? 2610141
邀请新用户注册赠送积分活动 1560472
关于科研通互助平台的介绍 1518157