Improving teaching-learning-based optimization algorithm with golden-sine and multi-population for global optimization

初始化 全局优化 计算机科学 人口 数学优化 算法 最优化问题 人工智能 数学 人口学 程序设计语言 社会学
作者
Aosheng Xing,Yong Chen,Jinyi Suo,Jie Zhang
出处
期刊:Mathematics and Computers in Simulation [Elsevier]
卷期号:221: 94-134 被引量:6
标识
DOI:10.1016/j.matcom.2024.02.008
摘要

Teaching-learning-based optimization (TLBO) is an optimization algorithm that has become very popular in recent years and has shown excellent performance in solving many scientific development issues. However, several recent studies have revealed that TLBO struggles with handling complicated issues and has a significant propensity to move back to the original. This research suggests a unique golden-sine and multi-population teaching-learning-based algorithm (GMTLBO) to address these issues. The main innovations of the algorithm are: Firstly, Instead of using the conventional random approach to find the initial individuals, the good point set strategy is utilized, which results in a more uniform initialization of the number of individuals in the search space and enhances the level of accuracy of the initial solution. Second, in the teacher phase, the origin offset issue is resolved by using the golden-sine search model to maintain the appropriate balance between worldwide exploration and regional exploitation. Finally, we incorporated the multi-population learner phase following the learner phase. Based on individual fitness values, the population is segmented into three identically sized subpopulations. Distinct mechanisms are then employed to allocate movement strategies to each sub-population for additional diversification and to prevent the algorithm from converging on regionally optimal solutions. Several validation tests were carried out on 23 traditional standard functions and the CEC2017 and CEC2019 test sets for assessing the effectiveness of the GMTLBO algorithm for resolving global optimization issues. The results demonstrate that GMTLBO converges faster and solves with higher accuracy compared to other algorithms. Additionally, GMTLBO was tested on four engineering design problems to assess its capability to solve restricted optimization issues. The suggested algorithm exhibits outstanding efficacy and competitiveness, according to experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUP编外人员完成签到,获得积分10
刚刚
jianmin发布了新的文献求助10
1秒前
1秒前
昵称发布了新的文献求助10
2秒前
SCI发发发发布了新的文献求助10
2秒前
左右不为难完成签到,获得积分10
2秒前
文艺稚晴发布了新的文献求助10
3秒前
3秒前
zzz完成签到,获得积分10
4秒前
4秒前
4秒前
李希有完成签到,获得积分20
5秒前
轻松刚完成签到,获得积分10
5秒前
5秒前
小静发布了新的文献求助30
6秒前
ss完成签到,获得积分10
6秒前
6秒前
shi hui应助微笑的冰烟采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
良辰应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
facetosea应助科研通管家采纳,获得20
8秒前
一一应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
一一应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
wu应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
一一应助科研通管家采纳,获得10
9秒前
聪明灵阳应助科研通管家采纳,获得10
9秒前
赘婿应助李希有采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
远山有灯完成签到,获得积分10
9秒前
一一应助科研通管家采纳,获得10
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490333
求助须知:如何正确求助?哪些是违规求助? 3077289
关于积分的说明 9148413
捐赠科研通 2769525
什么是DOI,文献DOI怎么找? 1519761
邀请新用户注册赠送积分活动 704287
科研通“疑难数据库(出版商)”最低求助积分说明 702113