Role of artificial‐intelligence‐assisted automated cardiac biometrics in prenatal screening for coarctation of aorta

主动脉缩窄 生物识别 产前诊断 医学 人工智能 主动脉 心脏病学 计算机科学 怀孕 生物 胎儿 遗传学
作者
Caroline Taksøe‐Vester,Kamil Mikolaj,O. B. Petersen,Niels Vejlstrup,Anders Nymark Christensen,Aasa Feragen,M. Nielsen,Morten Bo Søndergaard Svendsen,Martin G. Tolsgaard
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:64 (1): 36-43 被引量:4
标识
DOI:10.1002/uog.27608
摘要

ABSTRACT Objective Although remarkable strides have been made in fetal medicine and the prenatal diagnosis of congenital heart disease, around 60% of newborns with isolated coarctation of the aorta (CoA) are not identified prior to birth. The prenatal detection of CoA has been shown to have a notable impact on survival rates of affected infants. To this end, implementation of artificial intelligence (AI) in fetal ultrasound may represent a groundbreaking advance. We aimed to investigate whether the use of automated cardiac biometric measurements with AI during the 18–22‐week anomaly scan would enhance the identification of fetuses that are at risk of developing CoA. Methods We developed an AI model capable of identifying standard cardiac planes and conducting automated cardiac biometric measurements. Our data consisted of pregnancy ultrasound image and outcome data spanning from 2008 to 2018 and collected from four distinct regions in Denmark. Cases with a postnatal diagnosis of CoA were paired with healthy controls in a ratio of 1:100 and matched for gestational age within 2 days. Cardiac biometrics obtained from the four‐chamber and three‐vessel views were included in a logistic regression‐based prediction model. To assess its predictive capabilities, we assessed sensitivity and specificity on receiver‐operating‐characteristics (ROC) curves. Results At the 18–22‐week scan, the right ventricle (RV) area and length, left ventricle (LV) diameter and the ratios of RV/LV areas and main pulmonary artery/ascending aorta diameters showed significant differences, with Z ‐scores above 0.7, when comparing subjects with a postnatal diagnosis of CoA ( n = 73) and healthy controls ( n = 7300). Using logistic regression and backward feature selection, our prediction model had an area under the ROC curve of 0.96 and a specificity of 88.9% at a sensitivity of 90.4%. Conclusions The integration of AI technology with automated cardiac biometric measurements obtained during the 18–22‐week anomaly scan has the potential to enhance substantially the performance of screening for fetal CoA and subsequently the detection rate of CoA. Future research should clarify how AI technology can be used to aid in the screening and detection of congenital heart anomalies to improve neonatal outcomes. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ori完成签到,获得积分10
刚刚
SibetHu发布了新的文献求助10
1秒前
CodeCraft应助小华采纳,获得10
1秒前
1秒前
1秒前
bkagyin应助豆儿嘚小豆儿采纳,获得10
1秒前
典雅夏之完成签到,获得积分10
1秒前
hy发布了新的文献求助10
1秒前
1秒前
bkagyin应助啧啧啧采纳,获得10
2秒前
2秒前
曾经富发布了新的文献求助10
2秒前
2秒前
听雨应助桃子e采纳,获得10
2秒前
潇洒紫真发布了新的文献求助10
3秒前
科研通AI2S应助Catherine采纳,获得10
3秒前
sss发布了新的文献求助10
3秒前
大萌完成签到,获得积分10
3秒前
bkagyin应助QQQ采纳,获得10
3秒前
3秒前
3秒前
4秒前
逍遥猪皮完成签到,获得积分10
4秒前
布丁大师完成签到,获得积分10
4秒前
qwq完成签到,获得积分10
4秒前
可乐加冰发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
典雅夏之发布了新的文献求助10
5秒前
积极的含芙完成签到,获得积分20
5秒前
5秒前
科研小小白完成签到,获得积分10
6秒前
淡淡友瑶发布了新的文献求助10
6秒前
lbw关注了科研通微信公众号
6秒前
张yang发布了新的文献求助10
6秒前
鲁丁丁完成签到 ,获得积分10
6秒前
6秒前
林林发布了新的文献求助10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440