Role of artificial‐intelligence‐assisted automated cardiac biometrics in prenatal screening for coarctation of aorta

主动脉缩窄 生物识别 产前诊断 医学 人工智能 主动脉 心脏病学 计算机科学 怀孕 生物 胎儿 遗传学
作者
Caroline Taksøe‐Vester,Kamil Mikolaj,O. B. Petersen,Niels Vejlstrup,Anders Nymark Christensen,Aasa Feragen,M. Nielsen,Morten Bo Søndergaard Svendsen,Martin G. Tolsgaard
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:64 (1): 36-43 被引量:4
标识
DOI:10.1002/uog.27608
摘要

ABSTRACT Objective Although remarkable strides have been made in fetal medicine and the prenatal diagnosis of congenital heart disease, around 60% of newborns with isolated coarctation of the aorta (CoA) are not identified prior to birth. The prenatal detection of CoA has been shown to have a notable impact on survival rates of affected infants. To this end, implementation of artificial intelligence (AI) in fetal ultrasound may represent a groundbreaking advance. We aimed to investigate whether the use of automated cardiac biometric measurements with AI during the 18–22‐week anomaly scan would enhance the identification of fetuses that are at risk of developing CoA. Methods We developed an AI model capable of identifying standard cardiac planes and conducting automated cardiac biometric measurements. Our data consisted of pregnancy ultrasound image and outcome data spanning from 2008 to 2018 and collected from four distinct regions in Denmark. Cases with a postnatal diagnosis of CoA were paired with healthy controls in a ratio of 1:100 and matched for gestational age within 2 days. Cardiac biometrics obtained from the four‐chamber and three‐vessel views were included in a logistic regression‐based prediction model. To assess its predictive capabilities, we assessed sensitivity and specificity on receiver‐operating‐characteristics (ROC) curves. Results At the 18–22‐week scan, the right ventricle (RV) area and length, left ventricle (LV) diameter and the ratios of RV/LV areas and main pulmonary artery/ascending aorta diameters showed significant differences, with Z ‐scores above 0.7, when comparing subjects with a postnatal diagnosis of CoA ( n = 73) and healthy controls ( n = 7300). Using logistic regression and backward feature selection, our prediction model had an area under the ROC curve of 0.96 and a specificity of 88.9% at a sensitivity of 90.4%. Conclusions The integration of AI technology with automated cardiac biometric measurements obtained during the 18–22‐week anomaly scan has the potential to enhance substantially the performance of screening for fetal CoA and subsequently the detection rate of CoA. Future research should clarify how AI technology can be used to aid in the screening and detection of congenital heart anomalies to improve neonatal outcomes. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杨小么发布了新的文献求助10
1秒前
风中的怜阳完成签到,获得积分10
2秒前
所所应助娜娜呀采纳,获得10
2秒前
2秒前
开心如冬发布了新的文献求助10
2秒前
3秒前
3秒前
黄晟钊完成签到,获得积分10
3秒前
wbgwudi完成签到,获得积分10
4秒前
科研科完成签到,获得积分10
4秒前
5秒前
酷炫翠桃应助王不王采纳,获得10
5秒前
5秒前
苹果发布了新的文献求助10
5秒前
追寻的秋玲完成签到,获得积分10
6秒前
易槐完成签到,获得积分10
6秒前
曦曦发布了新的文献求助10
6秒前
无语的从云完成签到,获得积分10
7秒前
开心如冬完成签到,获得积分10
8秒前
桑葚完成签到,获得积分10
8秒前
ZYC007完成签到,获得积分10
8秒前
8秒前
Emily完成签到,获得积分10
9秒前
慕青应助xy采纳,获得10
9秒前
英俊的铭应助dahuihui采纳,获得10
9秒前
顺心紫南完成签到,获得积分10
9秒前
menghongmei发布了新的文献求助10
10秒前
偷乐发布了新的文献求助10
10秒前
李健应助无语的笑珊采纳,获得10
10秒前
10秒前
有机分子笼完成签到,获得积分10
11秒前
77777发布了新的文献求助10
11秒前
yjzzz完成签到,获得积分10
11秒前
fly完成签到,获得积分10
11秒前
大模型应助Dearjw1655采纳,获得10
12秒前
12秒前
12秒前
yueyue完成签到,获得积分10
12秒前
莫西莫西发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582