Role of artificial‐intelligence‐assisted automated cardiac biometrics in prenatal screening for coarctation of aorta

主动脉缩窄 生物识别 产前诊断 医学 人工智能 主动脉 心脏病学 计算机科学 怀孕 生物 胎儿 遗传学
作者
Caroline Taksøe‐Vester,Kamil Mikolaj,O. B. Petersen,Niels Vejlstrup,Anders Nymark Christensen,Aasa Feragen,M. Nielsen,Morten Bo Søndergaard Svendsen,Martin G. Tolsgaard
出处
期刊:Ultrasound in Obstetrics & Gynecology [Wiley]
卷期号:64 (1): 36-43 被引量:4
标识
DOI:10.1002/uog.27608
摘要

ABSTRACT Objective Although remarkable strides have been made in fetal medicine and the prenatal diagnosis of congenital heart disease, around 60% of newborns with isolated coarctation of the aorta (CoA) are not identified prior to birth. The prenatal detection of CoA has been shown to have a notable impact on survival rates of affected infants. To this end, implementation of artificial intelligence (AI) in fetal ultrasound may represent a groundbreaking advance. We aimed to investigate whether the use of automated cardiac biometric measurements with AI during the 18–22‐week anomaly scan would enhance the identification of fetuses that are at risk of developing CoA. Methods We developed an AI model capable of identifying standard cardiac planes and conducting automated cardiac biometric measurements. Our data consisted of pregnancy ultrasound image and outcome data spanning from 2008 to 2018 and collected from four distinct regions in Denmark. Cases with a postnatal diagnosis of CoA were paired with healthy controls in a ratio of 1:100 and matched for gestational age within 2 days. Cardiac biometrics obtained from the four‐chamber and three‐vessel views were included in a logistic regression‐based prediction model. To assess its predictive capabilities, we assessed sensitivity and specificity on receiver‐operating‐characteristics (ROC) curves. Results At the 18–22‐week scan, the right ventricle (RV) area and length, left ventricle (LV) diameter and the ratios of RV/LV areas and main pulmonary artery/ascending aorta diameters showed significant differences, with Z ‐scores above 0.7, when comparing subjects with a postnatal diagnosis of CoA ( n = 73) and healthy controls ( n = 7300). Using logistic regression and backward feature selection, our prediction model had an area under the ROC curve of 0.96 and a specificity of 88.9% at a sensitivity of 90.4%. Conclusions The integration of AI technology with automated cardiac biometric measurements obtained during the 18–22‐week anomaly scan has the potential to enhance substantially the performance of screening for fetal CoA and subsequently the detection rate of CoA. Future research should clarify how AI technology can be used to aid in the screening and detection of congenital heart anomalies to improve neonatal outcomes. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
爱科研的GG完成签到 ,获得积分10
刚刚
Cloud完成签到 ,获得积分10
刚刚
酒香曼陀罗完成签到,获得积分10
1秒前
sssssxxxx发布了新的文献求助10
1秒前
2秒前
3秒前
有魅力的惜蕊完成签到,获得积分10
3秒前
4秒前
7秒前
橙子abcy发布了新的文献求助10
7秒前
好好学习完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
心灵美的修洁完成签到 ,获得积分10
11秒前
11秒前
12秒前
虚幻靖易发布了新的文献求助10
12秒前
虎皮猫大人应助好好学习采纳,获得10
13秒前
15秒前
16秒前
16秒前
浪荡胭脂马完成签到,获得积分10
18秒前
yuxiaohua发布了新的文献求助10
18秒前
何文珍发布了新的文献求助10
18秒前
19秒前
彭于晏应助知山知水采纳,获得10
20秒前
yccaoh发布了新的文献求助10
20秒前
cumtlhy88完成签到 ,获得积分10
20秒前
科研通AI6应助研友_Z3NGvn采纳,获得10
20秒前
雅哈发布了新的文献求助10
20秒前
rh1006完成签到,获得积分10
21秒前
潇洒完成签到,获得积分10
21秒前
21秒前
记忆怎么删除完成签到,获得积分10
23秒前
123654完成签到 ,获得积分10
23秒前
小巧的诗双完成签到,获得积分10
23秒前
rh1006发布了新的文献求助20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284222
求助须知:如何正确求助?哪些是违规求助? 4437791
关于积分的说明 13814979
捐赠科研通 4318770
什么是DOI,文献DOI怎么找? 2370598
邀请新用户注册赠送积分活动 1366003
关于科研通互助平台的介绍 1329460