Transfer Learning of Spatial Features from High-resolution RGB Images for Large-scale and Robust Hyperspectral Remote Sensing Target Detection

高光谱成像 遥感 计算机科学 人工智能 模式识别(心理学) 图像分辨率 比例(比率) RGB颜色模型 判别式 计算机视觉 地质学 物理 量子力学
作者
Yuanfeng Wu,Zijin Li,Boya Zhao,Yuhang Song,Bing Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-32
标识
DOI:10.1109/tgrs.2024.3355184
摘要

Target detection is a critical task in interpreting hyperspectral remote sensing images. Small target (such as airplanes) detection is challenging, especially in large-scale complex scenes with high spectral variability of different land cover types. In this paper, we propose a transfer learning-based, large-scale, robust hyperspectral target detector (TLH 2 TD) to improve the accuracy of hyperspectral target detection (HTD) in large-scale complex scenes. TLH 2 TD learns the spatial features of hyperspectral targets from high-resolution remote sensing images and achieves high-precision HTD with fused spatial-spectral features. It comprises three parts: (1) The coupled target-background sample expansion (CTBSE) module is designed to expand the labeled hyperspectral target and background samples with sufficient high-resolution, labeled RGB images and a few labeled hyperspectral samples. (2) The hard positive and negative example mining (HPNEM) module trains the hard positive and negative samples to enhance the discriminative ability of the network, addressing the problem of inadequate sample training in large-scale hyperspectral images (HSIs). (3) The spatial-spectral weighted subspace (SSWS) module is designed to fuse the spatial features extracted from the target detection network and the spectral features based on the Mahalanobis distance. The results show that: (1) The TLH 2 TD achieves average area under the curve (AUC) values of 0.96, 0.96, and 0.93 on small-sized, medium-sized, and large-sized HSIs, respectively, achieving the highest accuracy compared with other HTD algorithms. (2) The TLH 2 TD exhibits the highest detection time efficiency for medium-sized and large-sized HSIs. (3) For large-sized HSIs, when most HTD algorithms fail, TLH 2 TD exhibits significantly higher accuracy and time efficiency than other methods. This is an important achievement to meet the robust target detection tasks of large-scale hyperspectral remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
刚刚
阔达曲奇发布了新的文献求助10
1秒前
廉凌波发布了新的文献求助10
1秒前
yigeluobo完成签到 ,获得积分10
3秒前
Peng丶Young完成签到,获得积分10
5秒前
中央完成签到,获得积分10
5秒前
YI发布了新的文献求助10
7秒前
wwwang完成签到,获得积分10
7秒前
科研小崩豆应助廉凌波采纳,获得10
7秒前
9秒前
雨木目完成签到,获得积分10
9秒前
落寞映易完成签到,获得积分10
10秒前
吃了当归发布了新的文献求助10
11秒前
今后应助qqct采纳,获得10
12秒前
晓彤发布了新的文献求助10
13秒前
keyan给mmmwwwx的求助进行了留言
14秒前
芋鱼予郁发布了新的文献求助30
14秒前
汏流萤完成签到,获得积分10
15秒前
SciGPT应助乖乖采纳,获得10
16秒前
liguanyu1078完成签到,获得积分10
16秒前
巴巴使完成签到,获得积分10
17秒前
19秒前
19秒前
求助萌新完成签到,获得积分10
21秒前
小小沙完成签到 ,获得积分10
22秒前
Moonlight发布了新的文献求助10
25秒前
123完成签到,获得积分10
27秒前
Helium发布了新的文献求助20
27秒前
烟花应助花花采纳,获得10
30秒前
32秒前
33秒前
SciGPT应助格子布采纳,获得10
33秒前
36秒前
李爱国应助wangqi采纳,获得10
37秒前
彭于晏应助ee采纳,获得10
38秒前
40秒前
黄阿鹏发布了新的文献求助10
40秒前
41秒前
Moonquakes_发布了新的文献求助10
41秒前
43秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141282
求助须知:如何正确求助?哪些是违规求助? 2792281
关于积分的说明 7802009
捐赠科研通 2448470
什么是DOI,文献DOI怎么找? 1302541
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237