A Credible and Fair Federated Learning Framework Based on Blockchain

计算机科学 可靠性 联合学习 任务(项目管理) 过程(计算) 计算机安全 可信赖性 块链 人工智能 管理 政治学 法学 经济 操作系统
作者
Leiming Chen,Dehai Zhao,Liping Tao,Kai Wang,Sibo Qiao,Xingjie Zeng,Chee Wei Tan
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:5
标识
DOI:10.1109/tai.2024.3355362
摘要

Federated learning enables cooperative computation between multiple participants while protecting user privacy. Currently, federated learning algorithms assume that all participants are trustworthy and their systems are secure. However, the following problems arise in real-world scenarios: (1) Malicious clients disrupt federated learning through model poisoning and data poisoning attacks. Although some research has proposed secure aggregation methods to solve this problem, most methods have limitations. (2) Due to the variance in data quality and computational resources among participants, rewards cannot be distributed equally. Some clients also exhibit free-rider behavior, seeking to cheat the reward system and manipulate global models. Evaluating client contribution and distributing rewards also present challenges.

To address these challenges, we design a trustworthy federated framework to ensure secure computing throughout the federated task process. First, we propose a malicious model detection method for secure model aggregation. Then, we also propose a fair method of assessing contribution to identify client-side free-riding behavior. Lastly, we develop a computation process grounded in blockchain and smart contracts to guarantee the trustworthiness and fairness of federated tasks. To validate the performance of our framework, we simulate different types of client attacks and contribution evaluation scenarios on several open-source datasets. The experiments show that our framework guarantees the federated task's credibility and achieves fair client contribution evaluation.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
碳骨架发布了新的文献求助10
1秒前
江秋白完成签到 ,获得积分10
2秒前
小屋发布了新的文献求助10
2秒前
森森完成签到,获得积分10
2秒前
XuD应助zhanzhanzhan采纳,获得10
3秒前
飘逸问薇发布了新的文献求助10
4秒前
Bobby发布了新的文献求助10
4秒前
abc123完成签到,获得积分10
4秒前
夙与完成签到,获得积分10
4秒前
额骨私发发布了新的文献求助10
4秒前
5秒前
5秒前
隐形曼青应助美好的山槐采纳,获得10
5秒前
思源应助打地鼠工人采纳,获得10
5秒前
6秒前
6秒前
yyh发布了新的文献求助10
6秒前
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
华仔应助LXY采纳,获得10
8秒前
陈军应助科研通管家采纳,获得20
8秒前
陈军应助科研通管家采纳,获得20
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得30
9秒前
qing_he应助meimale采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
陈军应助科研通管家采纳,获得40
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128679
求助须知:如何正确求助?哪些是违规求助? 2779501
关于积分的说明 7743462
捐赠科研通 2434802
什么是DOI,文献DOI怎么找? 1293635
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514