A Credible and Fair Federated Learning Framework Based on Blockchain

计算机科学 可靠性 联合学习 任务(项目管理) 过程(计算) 计算机安全 可信赖性 块链 人工智能 管理 政治学 法学 经济 操作系统
作者
Leiming Chen,Dehai Zhao,Liping Tao,Kai Wang,Sibo Qiao,Xingjie Zeng,Chee Wei Tan
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:22
标识
DOI:10.1109/tai.2024.3355362
摘要

Federated learning enables cooperative computation between multiple participants while protecting user privacy. Currently, federated learning algorithms assume that all participants are trustworthy and their systems are secure. However, the following problems arise in real-world scenarios: (1) Malicious clients disrupt federated learning through model poisoning and data poisoning attacks. Although some research has proposed secure aggregation methods to solve this problem, most methods have limitations. (2) Due to the variance in data quality and computational resources among participants, rewards cannot be distributed equally. Some clients also exhibit free-rider behavior, seeking to cheat the reward system and manipulate global models. Evaluating client contribution and distributing rewards also present challenges.

To address these challenges, we design a trustworthy federated framework to ensure secure computing throughout the federated task process. First, we propose a malicious model detection method for secure model aggregation. Then, we also propose a fair method of assessing contribution to identify client-side free-riding behavior. Lastly, we develop a computation process grounded in blockchain and smart contracts to guarantee the trustworthiness and fairness of federated tasks. To validate the performance of our framework, we simulate different types of client attacks and contribution evaluation scenarios on several open-source datasets. The experiments show that our framework guarantees the federated task's credibility and achieves fair client contribution evaluation.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JJ发布了新的文献求助10
1秒前
Weiweiweixiao完成签到,获得积分10
1秒前
透视眼发布了新的文献求助10
2秒前
丁浩伦应助pingli19861002采纳,获得10
3秒前
李在佛甚么完成签到,获得积分10
4秒前
君齐发布了新的文献求助10
4秒前
超帅冷雪完成签到,获得积分10
5秒前
孤独乐瑶完成签到,获得积分10
5秒前
或或完成签到,获得积分10
6秒前
6秒前
背后星月关注了科研通微信公众号
6秒前
鱼子西完成签到,获得积分10
6秒前
微笑的语梦完成签到 ,获得积分10
7秒前
7秒前
晨曦夕日完成签到,获得积分10
7秒前
Zeno发布了新的文献求助10
8秒前
xzy998应助负责的方盒采纳,获得10
8秒前
wang5945发布了新的文献求助10
9秒前
迷人叫兽发布了新的文献求助10
10秒前
Chen应助曦子采纳,获得10
10秒前
10秒前
尼尼关注了科研通微信公众号
10秒前
mlainian完成签到,获得积分10
10秒前
12秒前
peng完成签到 ,获得积分10
12秒前
clientprogram应助猫橘汽水采纳,获得30
14秒前
14秒前
呼呼发布了新的文献求助10
18秒前
18秒前
19秒前
思源应助梧桐采纳,获得10
19秒前
19秒前
科研通AI5应助Zeno采纳,获得10
20秒前
HtheJ发布了新的文献求助10
20秒前
土豪的访梦完成签到 ,获得积分10
21秒前
小管完成签到,获得积分10
22秒前
浮游应助z小侠采纳,获得10
22秒前
22秒前
23秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548351
求助须知:如何正确求助?哪些是违规求助? 3979162
关于积分的说明 12320490
捐赠科研通 3647724
什么是DOI,文献DOI怎么找? 2008929
邀请新用户注册赠送积分活动 1044359
科研通“疑难数据库(出版商)”最低求助积分说明 932972