A Credible and Fair Federated Learning Framework Based on Blockchain

计算机科学 可靠性 联合学习 任务(项目管理) 过程(计算) 计算机安全 可信赖性 块链 人工智能 管理 政治学 法学 经济 操作系统
作者
Leiming Chen,Dehai Zhao,Liping Tao,Kai Wang,Sibo Qiao,Xingjie Zeng,Chee Wei Tan
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:22
标识
DOI:10.1109/tai.2024.3355362
摘要

Federated learning enables cooperative computation between multiple participants while protecting user privacy. Currently, federated learning algorithms assume that all participants are trustworthy and their systems are secure. However, the following problems arise in real-world scenarios: (1) Malicious clients disrupt federated learning through model poisoning and data poisoning attacks. Although some research has proposed secure aggregation methods to solve this problem, most methods have limitations. (2) Due to the variance in data quality and computational resources among participants, rewards cannot be distributed equally. Some clients also exhibit free-rider behavior, seeking to cheat the reward system and manipulate global models. Evaluating client contribution and distributing rewards also present challenges.

To address these challenges, we design a trustworthy federated framework to ensure secure computing throughout the federated task process. First, we propose a malicious model detection method for secure model aggregation. Then, we also propose a fair method of assessing contribution to identify client-side free-riding behavior. Lastly, we develop a computation process grounded in blockchain and smart contracts to guarantee the trustworthiness and fairness of federated tasks. To validate the performance of our framework, we simulate different types of client attacks and contribution evaluation scenarios on several open-source datasets. The experiments show that our framework guarantees the federated task's credibility and achieves fair client contribution evaluation.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LL完成签到 ,获得积分10
1秒前
2秒前
承诺信守完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
5秒前
ping发布了新的文献求助10
6秒前
xx完成签到,获得积分10
6秒前
李李李发布了新的文献求助10
6秒前
zz发布了新的文献求助10
6秒前
6秒前
小蘑菇应助Kiki采纳,获得10
7秒前
燕子发布了新的文献求助10
7秒前
FayFoo发布了新的文献求助10
8秒前
小马甲应助王新新采纳,获得10
8秒前
9秒前
9秒前
10秒前
半田清舟完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
Dali应助zhang采纳,获得10
12秒前
小王同学发布了新的文献求助10
12秒前
豆子完成签到,获得积分10
13秒前
龚昊发布了新的文献求助10
13秒前
搜集达人应助sherman采纳,获得10
14秒前
14秒前
15秒前
Echo关注了科研通微信公众号
15秒前
16秒前
fan发布了新的文献求助10
16秒前
17秒前
17秒前
畅快的鱼发布了新的文献求助30
17秒前
18秒前
小王同学完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546