已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations

计算机科学 图形 人工神经网络 人工智能 理论计算机科学
作者
Wenjing Wang,Pengyong Han,Zhengwei Li,Ru Nie,Kangwei Wang,Lei Wang,Hongmei Liao
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 289-300 被引量:1
标识
DOI:10.1109/tcbb.2024.3355093
摘要

Previous studies have proven that circular RNAs (circRNAs) are inextricably connected to the etiology and pathophysiology of complicated diseases. Since conventional biological research are frequently small-scale, expensive, and time-consuming, it is essential to establish an efficient and reasonable computation-based method to identify disease-related circRNAs. In this paper, we proposed a novel ensemble model for predicting probable circRNA-disease associations based on multi-source similarity information(LMGATCDA). In particular, LMGATCDA first incorporates information on circRNA functional similarity, disease semantic similarity, and the Gaussian interaction profile (GIP) kernel similarity as explicit features, along with node-labeling of the three-hop subgraphs extracted from each linked target node as graph structural features. After that, the fused features are used as input, and further implied features are extracted by graph sampling aggregation (GraphSAGE) and multi-hop attention graph neural network (MAGNA). Finally, the prediction scores are obtained through a fully connected layer. With five-fold cross-validation, LMGATCDA demonstrated excellent competitiveness against gold standard data, reaching 95.37% accuracy and 91.31% recall with an AUC of 94.25% on the circR2Disease benchmark dataset. Collectively, the noteworthy findings from these case studies support our conclusion that the LMGATCDA model can provide reliable circRNA-disease associations for clinical research while helping to mitigate experimental uncertainties in wet-lab investigations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助霸气的绮露采纳,获得10
刚刚
shinn发布了新的文献求助10
3秒前
wu发布了新的文献求助10
3秒前
Marciu33发布了新的文献求助10
4秒前
开朗的尔风完成签到,获得积分10
13秒前
lc完成签到,获得积分20
13秒前
16秒前
对方正在输入...完成签到,获得积分10
16秒前
甘草三七完成签到,获得积分10
19秒前
20秒前
20秒前
Lee完成签到 ,获得积分10
20秒前
111发布了新的文献求助10
21秒前
好运完成签到 ,获得积分10
21秒前
科研通AI6.1应助王先生采纳,获得10
23秒前
DDL应助学术牛马采纳,获得10
23秒前
吕佳蔚完成签到 ,获得积分10
25秒前
清秀的金鱼应助wu采纳,获得10
26秒前
美满的雁桃完成签到 ,获得积分10
27秒前
29秒前
撒旦asd发布了新的文献求助10
30秒前
机智的嘻嘻完成签到 ,获得积分10
31秒前
32秒前
xch完成签到,获得积分10
32秒前
34秒前
lyncee完成签到,获得积分10
34秒前
Lucas应助发的不太好采纳,获得10
35秒前
nono完成签到 ,获得积分10
37秒前
梨凉完成签到,获得积分10
37秒前
yangy0519完成签到,获得积分20
37秒前
科研通AI6.1应助开心夏真采纳,获得10
38秒前
英俊的铭应助添添采纳,获得10
41秒前
44秒前
45秒前
汉堡包应助财荫夹印采纳,获得10
46秒前
科研通AI6.1应助Oscillator采纳,获得10
47秒前
妖妖灵1111完成签到 ,获得积分10
50秒前
yanni发布了新的文献求助30
51秒前
李健应助Cl采纳,获得10
51秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058