亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations

计算机科学 图形 人工神经网络 人工智能 理论计算机科学
作者
Wenjing Wang,Pengyong Han,Zhengwei Li,Ru Nie,Kangwei Wang,Lei Wang,Hongmei Liao
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 289-300
标识
DOI:10.1109/tcbb.2024.3355093
摘要

Previous studies have proven that circular RNAs (circRNAs) are inextricably connected to the etiology and pathophysiology of complicated diseases. Since conventional biological research are frequently small-scale, expensive, and time-consuming, it is essential to establish an efficient and reasonable computation-based method to identify disease-related circRNAs. In this paper, we proposed a novel ensemble model for predicting probable circRNA-disease associations based on multi-source similarity information(LMGATCDA). In particular, LMGATCDA first incorporates information on circRNA functional similarity, disease semantic similarity, and the Gaussian interaction profile (GIP) kernel similarity as explicit features, along with node-labeling of the three-hop subgraphs extracted from each linked target node as graph structural features. After that, the fused features are used as input, and further implied features are extracted by graph sampling aggregation (GraphSAGE) and multi-hop attention graph neural network (MAGNA). Finally, the prediction scores are obtained through a fully connected layer. With five-fold cross-validation, LMGATCDA demonstrated excellent competitiveness against gold standard data, reaching 95.37% accuracy and 91.31% recall with an AUC of 94.25% on the circR2Disease benchmark dataset. Collectively, the noteworthy findings from these case studies support our conclusion that the LMGATCDA model can provide reliable circRNA-disease associations for clinical research while helping to mitigate experimental uncertainties in wet-lab investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡面小猪发布了新的文献求助10
1秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
40秒前
foxmail.com完成签到,获得积分10
41秒前
foxmail.com发布了新的文献求助10
45秒前
51秒前
乐生发布了新的文献求助10
56秒前
乐生完成签到,获得积分10
1分钟前
温暖的盼山应助乐生采纳,获得10
1分钟前
ww发布了新的文献求助20
1分钟前
2分钟前
医路通行发布了新的文献求助20
2分钟前
Esperanza完成签到,获得积分10
2分钟前
chunjianghua完成签到,获得积分10
2分钟前
chunjianghua发布了新的文献求助10
3分钟前
科研剧中人完成签到,获得积分10
3分钟前
深情安青应助医路通行采纳,获得20
3分钟前
ww完成签到,获得积分10
3分钟前
xiaoshoujun发布了新的文献求助10
3分钟前
bkagyin应助医路通行采纳,获得20
3分钟前
JXY完成签到 ,获得积分10
3分钟前
ddddyooo完成签到 ,获得积分10
3分钟前
xiaoshoujun完成签到,获得积分10
3分钟前
nadia完成签到,获得积分10
4分钟前
淡然平蓝完成签到 ,获得积分10
4分钟前
4分钟前
调研昵称发布了新的文献求助30
4分钟前
5分钟前
Liang发布了新的文献求助10
5分钟前
5分钟前
Liang完成签到,获得积分10
5分钟前
binyh发布了新的文献求助10
5分钟前
jackone完成签到,获得积分10
6分钟前
andrele完成签到,获得积分10
6分钟前
6分钟前
隐形曼青应助科研通管家采纳,获得20
6分钟前
ding应助科研通管家采纳,获得10
6分钟前
顾矜应助科研通管家采纳,获得10
6分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299638
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989