LMGATCDA: Graph Neural Network With Labeling Trick for Predicting circRNA-Disease Associations

计算机科学 图形 人工神经网络 人工智能 理论计算机科学
作者
Wenjing Wang,Pengyong Han,Zhengwei Li,Ru Nie,Kangwei Wang,Lei Wang,Hongmei Liao
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 289-300 被引量:1
标识
DOI:10.1109/tcbb.2024.3355093
摘要

Previous studies have proven that circular RNAs (circRNAs) are inextricably connected to the etiology and pathophysiology of complicated diseases. Since conventional biological research are frequently small-scale, expensive, and time-consuming, it is essential to establish an efficient and reasonable computation-based method to identify disease-related circRNAs. In this paper, we proposed a novel ensemble model for predicting probable circRNA-disease associations based on multi-source similarity information(LMGATCDA). In particular, LMGATCDA first incorporates information on circRNA functional similarity, disease semantic similarity, and the Gaussian interaction profile (GIP) kernel similarity as explicit features, along with node-labeling of the three-hop subgraphs extracted from each linked target node as graph structural features. After that, the fused features are used as input, and further implied features are extracted by graph sampling aggregation (GraphSAGE) and multi-hop attention graph neural network (MAGNA). Finally, the prediction scores are obtained through a fully connected layer. With five-fold cross-validation, LMGATCDA demonstrated excellent competitiveness against gold standard data, reaching 95.37% accuracy and 91.31% recall with an AUC of 94.25% on the circR2Disease benchmark dataset. Collectively, the noteworthy findings from these case studies support our conclusion that the LMGATCDA model can provide reliable circRNA-disease associations for clinical research while helping to mitigate experimental uncertainties in wet-lab investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于雪晴发布了新的文献求助10
1秒前
hutu发布了新的文献求助10
1秒前
恒河鲤完成签到,获得积分10
1秒前
1秒前
Shanglinqin完成签到,获得积分10
2秒前
dalian完成签到,获得积分10
2秒前
2秒前
自然妙旋完成签到,获得积分10
2秒前
未晞发布了新的文献求助10
2秒前
3秒前
Magali应助飞天三叉戟采纳,获得50
3秒前
一科研土豆完成签到,获得积分10
3秒前
solar@2030发布了新的文献求助10
3秒前
霍笑白发布了新的文献求助10
4秒前
4秒前
kagami完成签到,获得积分10
4秒前
5秒前
尊敬吐司完成签到,获得积分10
5秒前
6秒前
Wacky完成签到,获得积分20
6秒前
CodeCraft应助hutu采纳,获得10
6秒前
6秒前
哎哟哎哟发布了新的文献求助10
6秒前
Fairy完成签到,获得积分10
7秒前
wan完成签到,获得积分10
8秒前
8秒前
夸夸555发布了新的文献求助10
8秒前
马良完成签到,获得积分10
8秒前
领导范儿应助linjunqi采纳,获得10
8秒前
8秒前
solar@2030完成签到,获得积分10
8秒前
lihua完成签到,获得积分10
9秒前
未晚完成签到 ,获得积分10
9秒前
li完成签到,获得积分10
9秒前
吴彦祖完成签到,获得积分10
10秒前
杨家赘婿发布了新的文献求助10
10秒前
10秒前
奔波儿灞完成签到,获得积分20
10秒前
11秒前
正直小白菜完成签到,获得积分20
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301