Multiscale graph convolution residual network for hyperspectral image classification

模式识别(心理学) 判别式 计算机科学 高光谱成像 残余物 人工智能 图形 特征提取 算法 理论计算机科学
作者
Ao Li,Yuegong Sun,C. F. Feng,Cheng Yuan,Xi Liang
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (01) 被引量:1
标识
DOI:10.1117/1.jrs.18.014504
摘要

In recent years, graph convolutional networks (GCNs) have attracted increased attention in hyperspectral image (HSI) classification through the utilization of data and their connection graph. However, most existing GCN-based methods have two main drawbacks. First, the constructed graph with pixel-level nodes loses many useful spatial information while high computational cost is required due to large graph size. Second, the joint spatial-spectral structure hidden in HSI are not fully explored for better neighbor correlation preservation, which limits the GCN to achieve promising performance on discriminative feature extraction. To address these problems, we propose a multiscale graph convolutional residual network (MSGCRN) for HSI classification. First, to explore the local spatial–spectral structure, superpixel segmentation is performed on the spectral principal component of HSI at different scales. Thus, the obtained multiscale superpixel areas can capture rich spatial texture division. Second, multiple superpixel-level subgraphs are constructed with adaptive weighted node aggregation, which not only effectively reduces the graph size, but also preserves local neighbor correlation in varying subgraph scales. Finally, a graph convolution residual network is designed for multiscale hierarchical features extraction, which are further integrated into the final discriminative features for HSI classification via a diffusion operation. Moreover, a mini-batch branch is adopted to the large-scale superpixel branch of MSGCRN to further reduce computational cost. Extensive experiments on three public HSI datasets demonstrate the advantages of our MSGCRN model compared to several cutting-edge approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
互助遵法尚德应助Gyrfalcon采纳,获得10
1秒前
皮卡噼里啪啦完成签到 ,获得积分10
1秒前
3秒前
酷波er应助阿布采纳,获得10
5秒前
是小胡ya发布了新的文献求助10
5秒前
陶醉薯片完成签到,获得积分10
6秒前
冫封的泪完成签到,获得积分10
6秒前
6秒前
小屋完成签到,获得积分10
7秒前
7秒前
雷总发布了新的文献求助10
7秒前
共享精神应助TT采纳,获得10
8秒前
威武的初兰完成签到,获得积分10
8秒前
shenzhou9发布了新的文献求助10
8秒前
Jasper应助美丽松鼠采纳,获得10
10秒前
大模型应助Yupa采纳,获得10
10秒前
ssadsd完成签到 ,获得积分10
10秒前
ccc完成签到,获得积分10
11秒前
研研研完成签到,获得积分10
11秒前
Lyy发布了新的文献求助10
12秒前
12秒前
13秒前
memory完成签到 ,获得积分20
13秒前
chenjun7080完成签到,获得积分10
13秒前
温柔梦松完成签到 ,获得积分10
14秒前
Jasper应助三杠采纳,获得10
15秒前
张硕士完成签到,获得积分10
15秒前
余治霆完成签到,获得积分10
17秒前
17秒前
感动的笑翠完成签到,获得积分10
17秒前
jacob258发布了新的文献求助10
18秒前
留胡子的小甜瓜完成签到,获得积分20
18秒前
20秒前
zzq778完成签到,获得积分10
20秒前
spy发布了新的文献求助10
20秒前
齐半青完成签到,获得积分10
22秒前
Sophia完成签到,获得积分10
22秒前
上杉绘梨衣完成签到,获得积分10
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175