Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling

Wnt信号通路 诱导多能干细胞 细胞生物学 调制(音乐) 细胞 化学 信号转导 生物 生物化学 胚胎干细胞 基因 物理 声学
作者
Jonathan Sai‐Hong Chui,Teresa Izuel Idoype,Alessandra Qualizza,Rita Pires de Almeida,Lindsey Piessens,Bernard K. van der Veer,Gert Vanmarcke,Aneta Malesa,Paraskevi Athanasouli,Ruben Boon,Joris Vriens,Leo A. van Grunsven,Kian Peng Koh,Catherine M. Verfaillie,Frederic Lluı́s
出处
期刊:Advanced Science [Wiley]
卷期号:11 (7) 被引量:2
标识
DOI:10.1002/advs.202307554
摘要

Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53-independent quiescent state in immature hepatoma cells and in pluripotent stem cell-derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity-regulated growth arrest followed by cell maturation, mediated by activation of NF-κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long-term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助meikoo采纳,获得10
刚刚
vampire完成签到,获得积分10
刚刚
KNH完成签到,获得积分10
刚刚
2秒前
Eve丶Paopaoxuan应助禾几采纳,获得10
2秒前
yiruwang完成签到,获得积分10
2秒前
KK完成签到,获得积分10
3秒前
ZMO发布了新的文献求助10
3秒前
无花果应助白方明采纳,获得10
4秒前
羞涩的怀蝶完成签到,获得积分20
4秒前
科研通AI5应助蓝白啦采纳,获得30
5秒前
5秒前
脑洞疼应助程宇采纳,获得10
5秒前
一一完成签到 ,获得积分10
5秒前
研友_LMg3PZ发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
刘佳会发布了新的文献求助10
7秒前
Yy发布了新的文献求助10
8秒前
许容完成签到,获得积分10
8秒前
CipherSage应助香蕉晓曼采纳,获得10
9秒前
qqq发布了新的文献求助10
9秒前
10秒前
科研小菜鸡完成签到,获得积分10
10秒前
someone发布了新的文献求助10
10秒前
11秒前
ZMO完成签到,获得积分10
11秒前
啵啵只因发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
幸福完成签到,获得积分10
14秒前
科研通AI2S应助白方明采纳,获得10
14秒前
刘佳会完成签到,获得积分10
16秒前
科研通AI5应助哦密密麻麻采纳,获得10
16秒前
Selanchole发布了新的文献求助10
17秒前
Owen应助平常馒头采纳,获得10
17秒前
Tree发布了新的文献求助10
17秒前
贪玩的豪英完成签到,获得积分10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312