Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling

Wnt信号通路 诱导多能干细胞 细胞生物学 调制(音乐) 细胞 化学 信号转导 生物 生物化学 胚胎干细胞 基因 物理 声学
作者
Jonathan Sai‐Hong Chui,Teresa Izuel Idoype,Alessandra Qualizza,Rita Pires de Almeida,Lindsey Piessens,Bernard K. van der Veer,Gert Vanmarcke,Aneta Malesa,Paraskevi Athanasouli,Ruben Boon,Joris Vriens,Leo A. van Grunsven,Kian Peng Koh,Catherine M. Verfaillie,Frederic Lluı́s
出处
期刊:Advanced Science [Wiley]
卷期号:11 (7) 被引量:2
标识
DOI:10.1002/advs.202307554
摘要

Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53-independent quiescent state in immature hepatoma cells and in pluripotent stem cell-derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity-regulated growth arrest followed by cell maturation, mediated by activation of NF-κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long-term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ttttt发布了新的文献求助30
1秒前
Akim应助左贵辉采纳,获得10
1秒前
蔡佩翰发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
河南萌神发布了新的文献求助10
2秒前
lilyimurarea完成签到,获得积分20
2秒前
fmwang完成签到,获得积分10
3秒前
3秒前
4秒前
dangdang发布了新的文献求助10
5秒前
5秒前
活泼听双发布了新的文献求助20
5秒前
5秒前
6秒前
核潜艇很优秀应助嘻嘻采纳,获得30
6秒前
大勺完成签到 ,获得积分10
7秒前
明理的凡霜完成签到,获得积分10
7秒前
sqb完成签到,获得积分10
8秒前
曾经曼梅发布了新的文献求助10
8秒前
8秒前
无极微光应助瘦瘦采纳,获得20
8秒前
连长发布了新的文献求助10
8秒前
Pooh发布了新的文献求助10
8秒前
LYDZ2发布了新的文献求助10
8秒前
9秒前
9秒前
啊棕完成签到,获得积分10
10秒前
SciGPT应助Ttttt采纳,获得10
10秒前
11秒前
dudu完成签到,获得积分10
12秒前
13秒前
无极微光应助婷123采纳,获得20
14秒前
14秒前
多情的奄完成签到,获得积分10
14秒前
情怀应助小乙大夫采纳,获得10
14秒前
Jinnnnn发布了新的文献求助10
14秒前
满天星完成签到,获得积分10
15秒前
TingtingGZ发布了新的文献求助10
16秒前
清河聂氏发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006