Artificial Intelligence Models and Employee Lifecycle Management: A Systematic Literature Review

计算机科学 系统回顾 人工智能 决策树 就业能力 人工神经网络 机器学习 Boosting(机器学习) 知识管理 数据科学 管理科学 心理学 工程类 法学 教育学 政治学 梅德林
作者
Saeed Nosratabadi,Roya Khayer Zahed,Vadim V. Ponkratov,Evgeniy V. Kostyrin
出处
期刊:Organizacija [De Gruyter]
卷期号:55 (3): 181-198 被引量:12
标识
DOI:10.2478/orga-2022-0012
摘要

Abstract Background and purpose: The use of artificial intelligence (AI) models for data-driven decision-making in different stages of employee lifecycle (EL) management is increasing. However, there is no comprehensive study that addresses contributions of AI in EL management. Therefore, the main goal of this study was to address this theoretical gap and determine the contribution of AI models to EL management. Methods: This study applied the PRISMA method, a systematic literature review model, to ensure that the maximum number of publications related to the subject can be accessed. The output of the PRISMA model led to the identification of 23 related articles, and the findings of this study were presented based on the analysis of these articles. Results: The findings revealed that AI algorithms were used in all stages of EL management (i.e., recruitment, on-boarding, employability and benefits, retention, and off-boarding). It was also disclosed that Random Forest, Support Vector Machines, Adaptive Boosting, Decision Tree, and Artificial Neural Network algorithms outperform other algorithms and were the most used in the literature. Conclusion: Although the use of AI models in solving EL management problems is increasing, research on this topic is still in its infancy stage, and more research on this topic is necessary.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjj完成签到,获得积分10
4秒前
6秒前
Orange应助SYH采纳,获得10
7秒前
8秒前
醉舞烟罗完成签到,获得积分10
8秒前
大熊完成签到 ,获得积分10
8秒前
喜欢我阿尔托莉雅吗完成签到,获得积分10
9秒前
10秒前
哈哈哈发布了新的文献求助10
10秒前
贺知什么书完成签到,获得积分10
13秒前
13秒前
笨笨娇完成签到 ,获得积分10
18秒前
ARXC完成签到,获得积分10
19秒前
小二郎应助hahhahah采纳,获得10
20秒前
三千弱水为君饮完成签到,获得积分10
21秒前
22秒前
顾矜应助科研通管家采纳,获得10
23秒前
兑润泽应助科研通管家采纳,获得100
23秒前
jnngshan应助科研通管家采纳,获得30
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
24秒前
李爱国应助科研通管家采纳,获得10
24秒前
毛豆应助科研通管家采纳,获得10
24秒前
毛豆应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
mhl11应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
mhl11应助科研通管家采纳,获得10
24秒前
24秒前
毛豆应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
毛豆应助科研通管家采纳,获得10
25秒前
半夏发布了新的文献求助10
31秒前
子云完成签到,获得积分10
32秒前
32秒前
33秒前
pluto应助wsqg123采纳,获得10
34秒前
kuikichu完成签到,获得积分10
35秒前
高尚完成签到,获得积分10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292341
求助须知:如何正确求助?哪些是违规求助? 2928648
关于积分的说明 8438021
捐赠科研通 2600684
什么是DOI,文献DOI怎么找? 1419216
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921