亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iPseU-TWSVM: Identification of RNA pseudouridine sites based on TWSVM

假尿苷 核糖核酸 支持向量机 计算生物学 核酸结构 核酸二级结构 序列分析 计算机科学 序列(生物学) 生物学数据 分类器(UML) 基因 人工智能 生物 生物信息学 遗传学 转移RNA
作者
Mingshuai Chen,Xin Zhang,Ying Ju,Qing Liu,Yijie Ding
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:19 (12): 13829-13850
标识
DOI:10.3934/mbe.2022644
摘要

<abstract> <p>Biological sequence analysis is an important basic research work in the field of bioinformatics. With the explosive growth of data, machine learning methods play an increasingly important role in biological sequence analysis. By constructing a classifier for prediction, the input sequence feature vector is predicted and evaluated, and the knowledge of gene structure, function and evolution is obtained from a large amount of sequence information, which lays a foundation for researchers to carry out in-depth research. At present, many machine learning methods have been applied to biological sequence analysis such as RNA gene recognition and protein secondary structure prediction. As a biological sequence, RNA plays an important biological role in the encoding, decoding, regulation and expression of genes. The analysis of RNA data is currently carried out from the aspects of structure and function, including secondary structure prediction, non-coding RNA identification and functional site prediction. Pseudouridine (У) is the most widespread and rich RNA modification and has been discovered in a variety of RNAs. It is highly essential for the study of related functional mechanisms and disease diagnosis to accurately identify У sites in RNA sequences. At present, several computational approaches have been suggested as an alternative to experimental methods to detect У sites, but there is still potential for improvement in their performance. In this study, we present a model based on twin support vector machine (TWSVM) for У site identification. The model combines a variety of feature representation techniques and uses the max-relevance and min-redundancy methods to obtain the optimum feature subset for training. The independent testing accuracy is improved by 3.4% in comparison to current advanced У site predictors. The outcomes demonstrate that our model has better generalization performance and improves the accuracy of У site identification. iPseU-TWSVM can be a helpful tool to identify У sites.</p> </abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助蒲雨采纳,获得10
6秒前
谦让的雅青完成签到 ,获得积分10
14秒前
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
19秒前
20秒前
Murphy发布了新的文献求助30
23秒前
26秒前
34秒前
十七发布了新的文献求助10
39秒前
Murphy完成签到,获得积分10
42秒前
SciGPT应助迪丽盐巴采纳,获得10
58秒前
MGXL完成签到 ,获得积分10
1分钟前
爱听歌的紫菜完成签到,获得积分10
1分钟前
1分钟前
蒲雨发布了新的文献求助10
1分钟前
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
迪丽盐巴发布了新的文献求助10
1分钟前
陆上飞完成签到,获得积分10
2分钟前
FashionBoy应助摆易欢采纳,获得10
2分钟前
我是老大应助香蕉念薇采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
2分钟前
杳鸢应助shuke采纳,获得30
2分钟前
嬴胡亥发布了新的文献求助10
2分钟前
摆易欢发布了新的文献求助10
2分钟前
碧蓝可仁完成签到 ,获得积分10
2分钟前
领导范儿应助ytx采纳,获得10
2分钟前
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
ytx发布了新的文献求助10
3分钟前
Orange应助HelenZ采纳,获得10
3分钟前
3分钟前
摆易欢完成签到,获得积分10
3分钟前
HelenZ发布了新的文献求助10
3分钟前
3分钟前
怡宝完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077921
关于积分的说明 9151234
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298