材料科学
密度泛函理论
共价键
离子键合
电子结构
化学键
金属键合
费米能级
金属
复合数
态密度
粘结强度
粘附
键能
复合材料
计算化学
凝聚态物理
冶金
分子
图层(电子)
胶粘剂
电子
化学
离子
有机化学
物理
量子力学
作者
Wengao Zhang,Zulai Li,Wei He,xinhua xiang,Fei Zhang,Quan Shan
标识
DOI:10.1016/j.mtcomm.2022.104470
摘要
The adhesion work, interfacial energy, electronic structure and interfacial bonding mechanism of WC/Fe3W3C and Fe/Fe3W3C were calculated based on first-principles density functional theory (DFT). The results show that WC(100)-w/Fe3W3C(110) interface has lower interfacial energy (0.9584 J/m2) and higher adhesion work (0.3265 J/m2) than WC(111)-w/Fe3W3C(110), Fe(110)/Fe3W3C(110) has lower interfacial energy (−4.0388 J/m2) and higher adhesion work (10.7346 J/m2) than Fe(211)/Fe3W3C(110). It is obvious that Fe(110)/Fe3W3C(110)has the most stable interface structure and the strongest bond strength. The differential charge density and partial wave density of states (PDOS) show that the average number of C-W bonds at the interface is the most 0.37, and the covalent bond is strong. Fe-Fe and Fe-W bonds are formed at the interface to form interface bonds. The Fe-d orbital show extremely strong metallicity near the Fermi energy level, and Fe-Fe and Fe-W are easier to form metallic and ionic bonds. The above results provide important guidance for improving the interfacial strength and stability of WC-Fe metal-matrix composite.
科研通智能强力驱动
Strongly Powered by AbleSci AI