离域电子
退化(生物学)
特征向量
安德森本地化
有界函数
物理
不相关
态密度
基质(化学分析)
传递矩阵
安德森杂质模型
统计物理学
凝聚态物理
量子力学
材料科学
数学
数学分析
计算机科学
电子
生物信息学
统计
复合材料
计算机视觉
生物
作者
Jie Liu,Carlo Danieli,Jianxin Zhong,Rudolf A. Römer
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2209.14650
摘要
Uncorrelated disorder in generalized 3D Lieb models gives rise to the existence of bounded mobility edges, destroys the macroscopic degeneracy of the flat bands and breaks their compactly-localized states. We now introduce a mix of order and disorder such that this degeneracy remains and the compactly-localized states are preserved. We obtain the energy-disorder phase diagrams and identify mobility edges. Intriguingly, for large disorder the survival of the compactly-localized states induces the existence of delocalized eigenstates close to the original flat band energies -- yielding seemingly divergent mobility edges. For small disorder, however, a change from extended to localized behavior can be found upon decreasing disorder -- leading to an unconventional ``inverse Anderson" behavior. We show that transfer matrix methods, computing the localization lengths, as well as sparse-matrix diagonalization, using spectral gap-ratio energy-level statistics, are in excellent quantitative agreement. The preservation of the compactly-localized states even in the presence of this disorder might be useful for envisaged storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI