已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying tomato leaf diseases under real field conditions using convolutional neural networks and a chatbot

卷积神经网络 鉴定(生物学) 人工智能 白粉病 植物病害 计算机科学 园艺 生物 植物 生物技术
作者
Hsueh-Hung Cheng,Yu-Lun Dai,Yun Lin,Hao-Chun Hsu,Chu-Ping Lin,Jin-Hsing Huang,Shih‐Fang Chen,Yan‐Fu Kuo
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:202: 107365-107365 被引量:12
标识
DOI:10.1016/j.compag.2022.107365
摘要

• Nearly 9 thousand diseased tomato leaf images were collected in real field condition. • An anomaly detection model was developed to verify if an input image was legit. • YOLOv4 was trained to identify the categories of the tomato diseases in the images. • The models were hosted on a cloud service that allows 24/7 access. • A LINE chatbot was developed as the user interface to access the models. Tomatoes are an essential crop in Taiwan and in many other countries worldwide. Disease is a major threat to tomato production, and disease identification is the first step to limiting production loss. Conventionally, plant disease identification has relied on naked-eye examination in fields by experienced farmers and culture and microscopic examination in laboratories by plant pathologists. However, as of 2021, the tomato industry in Taiwan is facing a labor shortage, and experienced farmers or pathologists are not always available. This study developed a method for the automatic identification of eight tomato disease and pest categories using images of tomato leaves, convolutional neural networks (CNNs), and a chatbot controller. Approximately 9,000 images of tomato leaves affected by 11 diseases and pests were collected in fields or greenhouses. The images and the respective lesions on the leaves were sorted into eight categories according to the appearance of lesions. Three CNNs—an anomaly detection model (ADM), a disease identification model (DIM), and a leaf mold/powdery mildew II distinguishing model (LPDM)—were respectively trained to detect anomalies (i.e., non-leaf images), to sort the images into the eight categories, and to distinguish between leaf mold and powdery mildew II. The three CNNs were hosted on a cloud service. The chatbot controller was programmed to manage the communication between the CNNs and the users through LINE, a mobile instant messaging application. The trained ADM achieved an accuracy of 97.40% in the detection of anomalous images. The trained DIM achieved an accuracy of 93.63% in the categorization of images into the eight tomato disease and pest categories. The trained LPDM achieved an accuracy of 98.70% in the distinction between leaf mold and powdery mildew II. The proposed system can assist farmers in timely identification of tomato leaf diseases and provide simple suggestions for the treatment and prevention of diseases in the identified category.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执念的鱼完成签到,获得积分10
1秒前
Annnnn..发布了新的文献求助50
2秒前
zz完成签到,获得积分10
3秒前
老实新筠发布了新的文献求助30
3秒前
SciGPT应助61采纳,获得10
4秒前
4秒前
dream177777发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
科研通AI2S应助个性的饼干采纳,获得10
6秒前
6秒前
7秒前
LJY关注了科研通微信公众号
8秒前
饱满若灵发布了新的文献求助10
8秒前
9秒前
9秒前
CY88发布了新的文献求助10
10秒前
Dr.coco发布了新的文献求助10
10秒前
zhang发布了新的文献求助10
11秒前
研友_ZleRV8发布了新的文献求助10
11秒前
11秒前
jinmuna完成签到,获得积分10
12秒前
12秒前
巫马尔槐完成签到,获得积分20
13秒前
13秒前
夏紊完成签到 ,获得积分10
13秒前
Timo干物类完成签到,获得积分10
15秒前
洞两发布了新的文献求助30
15秒前
大方荷花完成签到 ,获得积分10
16秒前
yyyxxx发布了新的文献求助10
16秒前
斯文败类应助zhang采纳,获得10
19秒前
FashionBoy应助Tony12采纳,获得20
22秒前
研友_ZleRV8完成签到,获得积分20
23秒前
科研通AI5应助独特的紫蓝采纳,获得10
25秒前
LJY发布了新的文献求助30
27秒前
大模型应助NX采纳,获得10
27秒前
乐乐应助科研通管家采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Polyurethane handbook : chemistry, raw materials, processing, application, properties 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3694884
求助须知:如何正确求助?哪些是违规求助? 3246330
关于积分的说明 9849800
捐赠科研通 2958105
什么是DOI,文献DOI怎么找? 1621889
邀请新用户注册赠送积分活动 767567
科研通“疑难数据库(出版商)”最低求助积分说明 741183