毒力
肠沙门氏菌
微生物学
生物
鹅去氧胆酸
沙门氏菌
胆汁酸
调节器
细菌
生物化学
基因
遗传学
作者
Xinglin Yang,Kathryn R. Stein,Howard C. Hang
标识
DOI:10.1038/s41589-022-01122-3
摘要
Bile acids are prominent host and microbiota metabolites that modulate host immunity and microbial pathogenesis. However, the mechanisms by which bile acids suppress microbial virulence are not clear. To identify the direct protein targets of bile acids in bacterial pathogens, we performed activity-guided chemical proteomic studies. In Salmonella enterica serovar Typhimurium, chenodeoxycholic acid (CDCA) most effectively inhibited the expression of virulence genes and invasion of epithelial cells and interacted with many proteins. Notably, we discovered that CDCA can directly bind and inhibit the function of HilD, an important transcriptional regulator of S. Typhimurium virulence and pathogenesis. Our characterization of bile acid-resistant HilD mutants in vitro and in S. Typhimurium infection models suggests that HilD is one of the key protein targets of anti-infective bile acids. This study highlights the utility of chemical proteomics to identify the direct protein targets of microbiota metabolites for mechanistic studies in bacterial pathogens. Chemoproteomic analysis reveals that anti-infective bile acids directly bind and inactivate a transcriptional regulator of Salmonella virulence.
科研通智能强力驱动
Strongly Powered by AbleSci AI