衰减
地质学
百分位
大地测量学
几何学
力矩震级标度
加速度
投影(关系代数)
力矩(物理)
震级(天文学)
物理
数学
统计
光学
经典力学
缩放比例
算法
天文
作者
William B. Joyner,David M. Boore
标识
DOI:10.1785/bssa0710062011
摘要
Abstract We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relations for peak horizontal acceleration and velocity. This new analysis uses a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. An innovation in technique is introduced that decouples the determination of the distance dependence of the data from the magnitude dependence. The resulting equations are log A = − 1.02 + 0.249 M − log r − 0.00255 r + 0.26 P r = ( d 2 + 7.3 2 ) 1 / 2 5.0 ≦ M ≦ 7.7 log V = − 0.67 + 0.489 M − log r − 0.00256 r + 0.17 S + 0.22 P r = ( d 2 + 4.0 2 ) 1 / 2 5.3 ≦ M ≦ 7.4 where A is peak horizontal acceleration in g, V is peak horizontal velocity in cm/ sec, M is moment magnitude, d is the closest distance to the surface projection of the fault rupture in km, S takes on the value of zero at rock sites and one at soil sites, and P is zero for 50 percentile values and one for 84 percentile values. We considered a magnitude-dependent shape, but we find no basis for it in the data; we have adopted the magnitude-independent shape because it requires fewer parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI