声子
纤锌矿晶体结构
拉曼光谱
各向异性
材料科学
物理
硅
分子束外延
凝聚态物理
能量(信号处理)
Crystal(编程语言)
结晶学
衍射
外延
光学
纳米技术
图层(电子)
化学
量子力学
计算机科学
冶金
程序设计语言
作者
T. Prokofyeva,M. Seon,J. Vanbuskirk,M. Holtz,S. A. Nikishin,N. N. Faleev,H. Temkin,Stefan Zollner
出处
期刊:Physical review
日期:2001-03-07
卷期号:63 (12)
被引量:250
标识
DOI:10.1103/physrevb.63.125313
摘要
We study the vibrational spectrum of AlN grown on Si(111). The AlN was deposited using gas-source molecular beam epitaxy. Raman backscattering along the growth c axis and from a cleaved surface perpendicular to the wurtzite c direction allows us to determine the ${E}_{2}^{1},$ ${E}_{2}^{2},$ ${A}_{1}(\mathrm{TO}),$ ${A}_{1}(\mathrm{LO}),$ and ${E}_{1}(\mathrm{TO})$ phonon energies. For a 0.8-\ensuremath{\mu}m-thick AlN layer under a biaxial tensile stress of 0.6 GPa, these are 249.0, 653.6, 607.3, 884.5, and 666.5 ${\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}$, respectively. By combining the Raman and x-ray diffraction studies, the Raman stress factor of AlN is found to be $\ensuremath{-}6.3\ifmmode\pm\else\textpm\fi{}1.4{\mathrm{cm}}^{\ensuremath{-}1}/\mathrm{GPa}$ for the ${E}_{2}^{2}$ phonon. This factor depends on published values of the elastic constants of AlN, as discussed in the text. The zero-stress ${E}_{2}^{2}$ energy is determined to be $657.4\ifmmode\pm\else\textpm\fi{}0.2{\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}.$ Fourier-transform infrared reflectance and absorption techniques allow us to measure the ${E}_{1}(\mathrm{TO})$ and ${A}_{1}(\mathrm{LO})$ phonon energies. The film thickness (from 0.06 to 1.0 \ensuremath{\mu}m) results in great differences in the reflectance spectra, which are well described by a model using damped Lorentzian oscillators taking into account the crystal anisotropy and the film thickness.
科研通智能强力驱动
Strongly Powered by AbleSci AI