Stiffening solids with liquid inclusions

变硬 刚度 模数 复合数 复合材料 表面张力 微观结构 微观力学 变形(气象学) 材料科学 物理 机械 热力学
作者
Robert W. Style,Rostislav Boltyanskiy,Benjamin Allen,Katharine Jensen,Henry P. Foote,J. S. Wettlaufer,Eric R. Dufresne
出处
期刊:Nature Physics [Springer Nature]
卷期号:11 (1): 82-87 被引量:231
标识
DOI:10.1038/nphys3181
摘要

From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid–liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions. Solids embedded with fluid inclusions are intuitively softer than their pure counterparts. But experiments show that when the droplets are small enough, material can become stiffer—highlighting a role for surface tension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lvzhigang采纳,获得10
刚刚
周周完成签到,获得积分10
2秒前
2秒前
毛豆爸爸应助火星上问柳采纳,获得20
3秒前
fan发布了新的文献求助10
3秒前
852应助ty采纳,获得10
5秒前
嘎嘎嘎完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
周周发布了新的文献求助10
7秒前
我是老大应助Nowind采纳,获得10
7秒前
binz完成签到,获得积分10
8秒前
DONGDONG完成签到,获得积分20
8秒前
10秒前
10秒前
丘比特应助坨坨西州采纳,获得10
11秒前
欢呼的水香关注了科研通微信公众号
12秒前
CodeCraft应助嗑瓜子传奇采纳,获得10
12秒前
彭于晏应助嗑瓜子传奇采纳,获得10
12秒前
科目三应助mmyhn采纳,获得10
12秒前
12秒前
kk完成签到 ,获得积分10
12秒前
14秒前
pupu关注了科研通微信公众号
14秒前
15秒前
15秒前
15秒前
17秒前
17秒前
18秒前
19秒前
时567完成签到,获得积分10
19秒前
19秒前
上官若男应助虚幻姝采纳,获得10
20秒前
gab发布了新的文献求助10
20秒前
紫易完成签到,获得积分20
21秒前
22秒前
22秒前
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244