肠肽酶
外肽酶
丝氨酸
生物化学
突变体
氨基酸
蛋白质亚单位
丝氨酸蛋白酶
蛋白酵素
劈理(地质)
酶
化学
重组DNA
生物
蛋白酶
融合蛋白
基因
断裂(地质)
古生物学
作者
Hye-Won Song,Seong Il Choi,Baik Lin Seong
标识
DOI:10.1006/abbi.2001.2737
摘要
Enteropeptidase (enterokinase) is a serine protease highly specific for recognition and cleavage of the target sequence of Asp–Asp–Asp–Asp–Lys (D4K). The three-dimensional structure of the enteropeptidase shows that the N-terminal amino acid is buried inside the protein providing molecular interactions necessary to maintain the conformation of the active site. To determine the influence of the N-terminal amino acid of enteropeptidase light chain (EKL) on the enzymatic activity, we constructed various mutants including 17 different single amino acid substitutions and three different extensions at the N-terminal end. The mutants of recombinant enteropeptidase (rEKL) were expressed in Saccharomyces cerevisiae and secreted into culture medium. Among 20 different mutants tested, the only mutant with the Ile → Val substitution exhibited significant activity. The kinetic properties of the mutant protein were very similar to those of the wild-type rEKL. Based on the three-dimensional structure where the N-terminal Ile is oriented into hydrophobic pocket, the results suggest that Val could substitute Ile without affecting the active conformation of the enzyme. The results also explain why all trypsin-like serine proteases carry either Ile or Val at the N-termini and none other amino acid residues are found. Moreover, this finding provides a mental framework for expressing the N-terminally engineered enteropeptidase in Escherichia coli, utilizing the known property of the methionine aminopeptidase that exhibits poor activity toward the N-terminal Met–Ile bond, but offers efficient cleavage of the Met–Val bond.
科研通智能强力驱动
Strongly Powered by AbleSci AI