Evaluation of Intracellular Polyphosphate Dynamics in Enhanced Biological Phosphorus Removal Process using Raman Microscopy

聚磷酸盐 强化生物除磷 化学 磷酸盐 化学工程 生物物理学 胞外聚合物 拉曼光谱 细胞内
作者
Nehreen Majed,Christian Matthäus,Max Diem,April Z. Gu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:43 (14): 5436-5442 被引量:67
标识
DOI:10.1021/es900251n
摘要

A Raman microscopy method was developed and successfully applied to evaluate the dynamics of intracellular polyphosphate in polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) processes. Distinctive Raman spectra of polyphosphates allowed for both identification of PAOs and quantification of intracellular polyphosphate during various metabolic phases in a lab-scale EBPR process. Observation of polyphosphate at individual cell level indicated thatthere are distributed states of cells in terms of polyphosphate content at any given time, suggesting that agent-based distributive modeling would more accurately reflect the behavior of an EBPR process than the traditional average-state based modeling. The results, for the first time, showed that the polyphosphate depletion or replenishment observed at the overall population level were collective results from shifts/transition in the distribution of abundance of PAOs with different amounts of polyphosphate inclusions during EBPR. Imaging construction based on simultaneous quantification of intracellular polyphosphate and protein revealed the spatial distribution of polyphosphate inside cells and showed that the polyphosphates accumulate in smaller or larger aggregates, rather than being evenly distributed within the cytoplasm. The results demonstated that Raman microscopy will allow for detailed cellular-level evaluation of polyphosphate metabolism and dynamics in EBPR processes and revealed mechanism insights, which otherwise would not be obtained using a traditional bulk measurement-based approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
眯眯眼的世界应助Cat采纳,获得10
1秒前
踏实无敌应助甘新儿采纳,获得10
1秒前
2秒前
科研通AI5应助十二采纳,获得10
2秒前
成环醚发布了新的文献求助30
2秒前
sssa完成签到,获得积分20
2秒前
2秒前
FoxLY完成签到,获得积分10
3秒前
彩虹发布了新的文献求助10
3秒前
huhdcid发布了新的文献求助10
3秒前
笙声发布了新的文献求助30
4秒前
Q学发布了新的文献求助10
4秒前
希望天下0贩的0应助jasonwee采纳,获得10
4秒前
5秒前
你长得很下饭所以完成签到,获得积分10
5秒前
资白玉发布了新的文献求助10
5秒前
香蕉觅云应助棉花糖采纳,获得10
6秒前
kiuikiu发布了新的文献求助10
6秒前
6秒前
优秀的半梦关注了科研通微信公众号
6秒前
buchirou应助lvbowen采纳,获得20
7秒前
7秒前
HH发布了新的文献求助10
8秒前
小二郎应助wanli采纳,获得10
8秒前
鲁冰香完成签到 ,获得积分10
8秒前
8秒前
minino发布了新的文献求助10
8秒前
9秒前
10秒前
彭于彦祖应助舒心的冰烟采纳,获得10
10秒前
科研通AI5应助pumbaaxu采纳,获得10
11秒前
蔺瑾瑜发布了新的文献求助10
11秒前
科研小郭发布了新的文献求助10
11秒前
成环醚完成签到,获得积分10
12秒前
NorthWang发布了新的文献求助10
12秒前
无花果应助1+1采纳,获得10
12秒前
AKKKK完成签到,获得积分10
13秒前
shoolarli完成签到,获得积分10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400