ABSTRACT It is axiomatic that the mode of packing of very large volumes of particles of uniform shape and size is independent of the size of the particles, provided they are large enough for the effect of electrostatic forces, air films, etc., to be negligible. An apparatus is described, in which equal true volumes of approximately spherical particles, ranging in diameter from 0.2 to 0.0035 inch, pack practically to the same apparent volume. This apparatus was used in studying the packing of mixtures of two and three sues of particles. By plotting the data so obtained in diagrams of a particularly convenient character, it is shown that the apparent volumes of mixtures containing unit real volume of solid fall between limiting values which can be calculated from simple assumptions, and that their deviation from these limits depends in a definite manner upon the diameter ratios of the component particles. The conditions governing the application of the results of the study to ceramic technology are pointed out.