纳米技术
材料科学
纳米棒
量子点
纳米颗粒
荧光
自组装
胶体金
纳米线
量子力学
物理
作者
Allen Y. Chen,Zhengtao Deng,Amanda N. Billings,Urartu Özgür Şafak Şeker,Michelle Y. Lu,Robert J. Citorik,Bijan Zakeri,Timothy K. Lu
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2014-03-21
卷期号:13 (5): 515-523
被引量:358
摘要
Many natural biological systems--such as biofilms, shells and skeletal tissues--are able to assemble multifunctional and environmentally responsive multiscale assemblies of living and non-living components. Here, by using inducible genetic circuits and cellular communication circuits to regulate Escherichia coli curli amyloid production, we show that E. coli cells can organize self-assembling amyloid fibrils across multiple length scales, producing amyloid-based materials that are either externally controllable or undergo autonomous patterning. We also interfaced curli fibrils with inorganic materials, such as gold nanoparticles (AuNPs) and quantum dots (QDs), and used these capabilities to create an environmentally responsive biofilm-based electrical switch, produce gold nanowires and nanorods, co-localize AuNPs with CdTe/CdS QDs to modulate QD fluorescence lifetimes, and nucleate the formation of fluorescent ZnS QDs. This work lays a foundation for synthesizing, patterning, and controlling functional composite materials with engineered cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI