数学
有界函数
索波列夫空间
稳健性(进化)
径向基函数
支持向量机
应用数学
功能(生物学)
基函数
函数逼近
趋同(经济学)
数学优化
算法
数学分析
计算机科学
人工智能
人工神经网络
生物化学
化学
进化生物学
生物
经济
基因
经济增长
作者
Boxi Xu,Shuai Lu,Min Zhong
标识
DOI:10.1080/00036811.2014.918261
摘要
In this paper, we investigate the multiscale support vector regression (SVR) method for approximation of functions in Sobolev spaces on bounded domains. The Vapnik ϵ-intensive loss function, which has been developed well in learning theory, is introduced to replace the standard l2 loss function in multiscale least squares methods. Convergence analysis is presented to verify the validity of the multiscale SVR method with scaled versions of compactly supported radial basis functions. Error estimates on noisy observation data are also derived to show the robustness of our proposed algorithm. Numerical simulations support the theoretical predictions.
科研通智能强力驱动
Strongly Powered by AbleSci AI