Accurate LAI retrieval method based on PROBA/CHRIS data

高光谱成像 遥感 叶面积指数 反演(地质) 环境科学 成像光谱仪 天蓬 航程(航空) 计算机科学 分光计 地质学 光学 物理 地理 生态学 古生物学 材料科学 考古 构造盆地 复合材料 生物
作者
Wenjie Fan,Xiaobin Xu,Xichuan Liu,Bonan Yan,Yaokui Cui
出处
期刊:Hydrology and Earth System Sciences [Copernicus Publications]
卷期号:14 (8): 1499-1507 被引量:35
标识
DOI:10.5194/hess-14-1499-2010
摘要

Abstract. Leaf area index (LAI) is one of the key structural variables in terrestrial vegetation ecosystems. Remote sensing offers an opportunity to accurately derive LAI at regional scales. The anisotropy of canopy reflectance, variations in background characteristics, and variability in atmospheric conditions constitute three factors that can strongly constrain the accuracy of retrieved LAI. Based on a hybrid canopy reflectance model, a new hyperspectral directional second derivative method (DSD) is proposed in this paper. This method can estimate LAI accurately through analyzing the canopy anisotropy. The effect of the background can also be effectively removed. With the aid of a widely-accepted atmospheric model, the influence of atmospheric conditions can be minimized as well. Thus the inversion precision and the dynamic range can be markedly improved, which has been proved by numerical simulations. As the derivative method is very sensitive to random noise, we put forward an innovative filtering approach, by which the data can be de-noised in spectral and spatial dimensions synchronously. It shows that the filtering method can remove random noise effectively; therefore, the method can be applied to hyperspectral images. The study region was situated in Zhangye, Gansu Province, China; hyperspectral and multi-angular images of the study region were acquired via the Compact High-Resolution Imaging Spectrometer/Project for On-Board Autonomy (CHRIS/PROBA), on 4 June 2008. After the pre-processing procedures, the DSD method was applied, and the retrieved LAI was validated by ground reference data at 11 sites. Results show that the new LAI inversion method is accurate and effective with the aid of the innovative filtering method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宰宰小熊完成签到 ,获得积分20
4秒前
allrubbish完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
爱撒娇的孤丹完成签到 ,获得积分10
6秒前
1515完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
12秒前
科研女仆完成签到 ,获得积分10
15秒前
李秋静完成签到,获得积分10
15秒前
JUAN完成签到,获得积分10
17秒前
Jeffrey完成签到,获得积分10
18秒前
甜美的觅荷完成签到,获得积分10
19秒前
初心路完成签到 ,获得积分0
21秒前
alixy完成签到,获得积分10
22秒前
dmr完成签到,获得积分10
22秒前
Ha完成签到,获得积分10
23秒前
优雅含灵完成签到 ,获得积分10
26秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
OSASACB完成签到 ,获得积分10
31秒前
32秒前
英姑应助故意的小松鼠采纳,获得10
33秒前
量子星尘发布了新的文献求助10
36秒前
Xulyun完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
fqpang发布了新的文献求助20
37秒前
39秒前
Skywalk满天星完成签到,获得积分10
39秒前
41秒前
JOY完成签到,获得积分10
43秒前
温软完成签到 ,获得积分10
45秒前
大胆的自行车完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
52秒前
煲煲煲仔饭完成签到 ,获得积分10
52秒前
汐颜紫雨完成签到,获得积分10
54秒前
wing完成签到 ,获得积分10
56秒前
002完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671559
求助须知:如何正确求助?哪些是违规求助? 4919724
关于积分的说明 15134997
捐赠科研通 4830375
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540671
关于科研通互助平台的介绍 1498971