Quantitative Electrochemical Measurements Using In Situ ec-S/TEM Devices

介电谱 材料科学 循环伏安法 电极 电化学 分析化学(期刊) 微流控 电化学电池 电解质 纳米技术 化学 色谱法 物理化学
作者
Raymond R. Unocic,Robert L. Sacci,Gilbert M. Brown,Gabriel M. Veith,Nancy J. Dudney,Karren L. More,Franklin S. Walden,Daniel S. Gardiner,John Damiano,David P. Nackashi
出处
期刊:Microscopy and Microanalysis [Cambridge University Press]
卷期号:20 (2): 452-461 被引量:89
标识
DOI:10.1017/s1431927614000166
摘要

Abstract Insight into dynamic electrochemical processes can be obtained with in situ electrochemical-scanning/transmission electron microscopy (ec-S/TEM), a technique that utilizes microfluidic electrochemical cells to characterize electrochemical processes with S/TEM imaging, diffraction, or spectroscopy. The microfluidic electrochemical cell is composed of microfabricated devices with glassy carbon and platinum microband electrodes in a three-electrode cell configuration. To establish the validity of this method for quantitative in situ electrochemistry research, cyclic voltammetry (CV), choronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were performed using a standard one electron transfer redox couple [Fe(CN) 6 ] 3−/4− -based electrolyte. Established relationships of the electrode geometry and microfluidic conditions were fitted with CV and chronoamperometic measurements of analyte diffusion coefficients and were found to agree with well-accepted values that are on the order of 10 −5 cm 2 /s. Influence of the electron beam on electrochemical measurements was found to be negligible during CV scans where the current profile varied only within a few nA with the electron beam on and off, which is well within the hysteresis between multiple CV scans. The combination of experimental results provides a validation that quantitative electrochemistry experiments can be performed with these small-scale microfluidic electrochemical cells provided that accurate geometrical electrode configurations, diffusion boundary layers, and microfluidic conditions are accounted for.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Iridesent0v0采纳,获得10
刚刚
钮小妞发布了新的文献求助20
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
搜集达人应助优美松思采纳,获得10
1秒前
orixero应助33猫采纳,获得30
1秒前
lucky应助端庄的访烟采纳,获得10
2秒前
影子芳香发布了新的文献求助10
2秒前
2秒前
zhang111完成签到,获得积分10
2秒前
剑门侠客完成签到,获得积分10
2秒前
zwy完成签到,获得积分10
3秒前
聪明的阿呆完成签到,获得积分10
3秒前
老德完成签到,获得积分10
3秒前
赵念婉发布了新的文献求助10
3秒前
3秒前
4秒前
lisasasasa完成签到,获得积分10
4秒前
万能图书馆应助张宜诺采纳,获得10
4秒前
1397发布了新的文献求助10
4秒前
gs完成签到,获得积分10
4秒前
wwy发布了新的文献求助10
4秒前
5秒前
123发布了新的文献求助10
5秒前
Lil_Ryan发布了新的文献求助10
5秒前
5秒前
6秒前
zwy发布了新的文献求助10
6秒前
6秒前
小至完成签到,获得积分10
6秒前
6秒前
小左关注了科研通微信公众号
7秒前
WESTBROOK完成签到,获得积分20
7秒前
ss发布了新的文献求助10
8秒前
lisasasasa发布了新的文献求助10
8秒前
jyu发布了新的文献求助10
8秒前
9秒前
WYN关闭了WYN文献求助
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616