Quantitative Electrochemical Measurements Using In Situ ec-S/TEM Devices

介电谱 材料科学 循环伏安法 电极 电化学 分析化学(期刊) 微流控 电化学电池 电解质 纳米技术 化学 色谱法 物理化学
作者
Raymond R. Unocic,Robert L. Sacci,Gilbert M. Brown,Gabriel M. Veith,Nancy J. Dudney,Karren L. More,Franklin S. Walden,Daniel S. Gardiner,John Damiano,David P. Nackashi
出处
期刊:Microscopy and Microanalysis [Cambridge University Press]
卷期号:20 (2): 452-461 被引量:79
标识
DOI:10.1017/s1431927614000166
摘要

Insight into dynamic electrochemical processes can be obtained with in situ electrochemical-scanning/transmission electron microscopy (ec-S/TEM), a technique that utilizes microfluidic electrochemical cells to characterize electrochemical processes with S/TEM imaging, diffraction, or spectroscopy. The microfluidic electrochemical cell is composed of microfabricated devices with glassy carbon and platinum microband electrodes in a three-electrode cell configuration. To establish the validity of this method for quantitative in situ electrochemistry research, cyclic voltammetry (CV), choronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were performed using a standard one electron transfer redox couple [Fe(CN)6]3-/4--based electrolyte. Established relationships of the electrode geometry and microfluidic conditions were fitted with CV and chronoamperometic measurements of analyte diffusion coefficients and were found to agree with well-accepted values that are on the order of 10-5 cm2/s. Influence of the electron beam on electrochemical measurements was found to be negligible during CV scans where the current profile varied only within a few nA with the electron beam on and off, which is well within the hysteresis between multiple CV scans. The combination of experimental results provides a validation that quantitative electrochemistry experiments can be performed with these small-scale microfluidic electrochemical cells provided that accurate geometrical electrode configurations, diffusion boundary layers, and microfluidic conditions are accounted for.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的糖豆完成签到,获得积分10
1秒前
阉太狼完成签到,获得积分10
1秒前
2秒前
soory完成签到,获得积分10
3秒前
任性的傲柏完成签到,获得积分10
3秒前
lwk205完成签到,获得积分0
3秒前
4秒前
一一完成签到,获得积分10
4秒前
4秒前
4秒前
高中生完成签到,获得积分10
5秒前
5秒前
5秒前
希望天下0贩的0应助TT采纳,获得10
6秒前
xxegt完成签到 ,获得积分10
6秒前
7秒前
爱吃泡芙发布了新的文献求助10
7秒前
susu完成签到,获得积分10
9秒前
会神发布了新的文献求助10
9秒前
KK完成签到,获得积分10
10秒前
充电宝应助justin采纳,获得10
12秒前
13秒前
Ch完成签到 ,获得积分10
14秒前
16秒前
ajun完成签到,获得积分10
16秒前
16秒前
春江完成签到,获得积分10
16秒前
16秒前
漂亮的松思完成签到,获得积分20
19秒前
19秒前
xiuwen发布了新的文献求助10
20秒前
黑衣人的秘密完成签到,获得积分10
20秒前
20秒前
mushrooms119完成签到,获得积分10
21秒前
21秒前
榨菜发布了新的文献求助10
21秒前
Cindy应助体贴的夕阳采纳,获得10
21秒前
MEME完成签到,获得积分10
22秒前
zfzf0422发布了新的文献求助10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808