Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization

计算机科学 数学优化 粒子群优化 混乱的 最优化问题 趋同(经济学) 高效能源利用 水准点(测量) 能源消耗 算法 数学 人工智能 电气工程 生物 工程类 经济增长 经济 地理 生态学 大地测量学
作者
Meiqin Tang,Yalin Xin
出处
期刊:Computer Networks [Elsevier]
卷期号:100: 1-11 被引量:31
标识
DOI:10.1016/j.comnet.2016.02.010
摘要

In this paper, the trade-off between utility and energy consumption in orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) network is investigated. Energy efficiency problem is very important in the field of CR network, where the utility is maximized and the energy consumption is minimized in such a CR network. Since the trade-off between them has been paying more attentions in literature, this study summarizes the power allocation as an optimization problem that maximizes the energy efficiency via a new energy efficiency metric defined by this paper. The formulated problem is a large-scale nonconvex problem, which is very difficult to solve. In this paper, we present an improved particle swarm optimization (PSO) algorithm to solve the difficult large-scale optimization problem directly. Given the weak convergence of the original PSO around local optima, an improved version that combines the chaos theory is proposed in this study, where chaos theory can help PSO search for solutions around the personal and global bests. In addition, for the purpose of accelerating the convergence process when facing with such a large-scale optimization, the original problem is decomposed into a number of small ones by employing the coevolutionary methodology, and then divide-and-conquer strategy is used to avoid producing infeasible solutions. Simulations demonstrate that the proposed coevolution chaotic PSO needs a smaller number of iterations and can achieve more energy efficiency than the other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shouyu29应助科研通管家采纳,获得10
刚刚
刚刚
顾闭月发布了新的文献求助10
刚刚
刚刚
活力绮兰应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
栀清完成签到,获得积分20
1秒前
小W爱吃梨完成签到,获得积分10
3秒前
3秒前
栀清发布了新的文献求助10
3秒前
zss完成签到 ,获得积分10
4秒前
4秒前
张无忌发布了新的文献求助30
5秒前
6秒前
wocao完成签到 ,获得积分10
9秒前
卡卡发布了新的文献求助10
9秒前
10秒前
aa完成签到,获得积分10
10秒前
昵称什么的不重要啦完成签到 ,获得积分10
10秒前
甜筒完成签到 ,获得积分10
10秒前
兴奋的问旋应助Li猪猪采纳,获得10
11秒前
钰c完成签到,获得积分10
12秒前
心灵美的白易完成签到,获得积分10
12秒前
勤劳冰烟完成签到,获得积分10
14秒前
雨雾完成签到,获得积分10
14秒前
斯文败类应助凶狠的乐巧采纳,获得10
14秒前
14秒前
生言生语完成签到,获得积分10
14秒前
alick发布了新的文献求助10
15秒前
钰c发布了新的文献求助10
15秒前
Maggie完成签到 ,获得积分10
15秒前
四月是一只爱猫的羊完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
打打应助嘟嘟请让一让采纳,获得10
17秒前
专一完成签到,获得积分10
17秒前
Lucas应助九川采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794