Wavelet restoration of medical pulse-echo ultrasound images in an EM framework

斑点图案 小波 人工智能 分段 图像复原 计算机科学 图像质量 计算机视觉 模式识别(心理学) 图像处理 数学 图像(数学) 数学分析
作者
James Ng,Richard W. Prager,Nick Kingsbury,Graham M. Treece,Andrew H. Gee
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 550-568 被引量:64
标识
DOI:10.1109/tuffc.2007.278
摘要

The clinical utility of pulse-echo ultrasound images is severely limited by inherent poor resolution that impacts negatively on their diagnostic potential. Research into the enhancement of image quality has mostly been concentrated in the areas of blind image restoration and speckle removal, with little regard for accurate modeling of the underlying tissue reflectivity that is imaged. The acoustic response of soft biological tissues has statistics that differ substantially from the natural images considered in mainstream image processing: although, on a macroscopic scale, the overall tissue echogenicity does behave somewhat like a natural image and varies piecewise-smoothly, on a microscopic scale, the tissue reflectivity exhibits a pseudo-random texture (manifested in the amplitude image as speckle) due to the dense concentrations of small, weakly scattering particles. Recognizing that this pseudo-random texture is diagnostically important for tissue identification, we propose modeling tissue reflectivity as the product of a piecewise-smooth echogenicity map and a field of uncorrelated, identically distributed random variables. We demonstrate how this model of tissue reflectivity can be exploited in an expectation-maximization (EM) algorithm that simultaneously solves the image restoration problem and the speckle removal problem by iteratively alternating between Wiener filtering (to solve for the tissue reflectivity) and wavelet-based denoising (to solve for the echogenicity map). Our simulation and in vitro results indicate that our EM algorithm is capable of producing restored images that have better image quality and greater fidelity to the true tissue reflectivity than other restoration techniques based on simpler regularizing constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科目三应助落落采纳,获得10
3秒前
67发布了新的文献求助10
3秒前
3秒前
溜溜完成签到,获得积分10
3秒前
xixi完成签到 ,获得积分10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
撒上咖啡应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
琪琪扬扬发布了新的文献求助10
4秒前
sutharsons应助科研通管家采纳,获得30
4秒前
orixero应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
清爽老九应助科研通管家采纳,获得20
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
hui发布了新的文献求助30
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
6秒前
迟大猫应助若狂采纳,获得10
6秒前
11111发布了新的文献求助30
6秒前
溜溜发布了新的文献求助10
7秒前
8秒前
wanli445完成签到,获得积分10
9秒前
科研通AI2S应助satchzhao采纳,获得10
9秒前
是小程啊完成签到 ,获得积分10
9秒前
琪琪扬扬完成签到,获得积分10
10秒前
11111完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808