光毒性
光动力疗法
光敏剂
谷胱甘肽
纳米颗粒
活性氧
材料科学
化学
纳米技术
生物物理学
光化学
有机化学
体外
生物化学
生物
酶
作者
Cheng Tao,Nuo Yu,Qian Ren,Mei Wen,Pu Qiu,Shining Niu,Maoquan Li,Zhigang Chen
标识
DOI:10.1016/j.actbio.2024.01.042
摘要
Photodynamic therapy (PDT) is a clinically approved treatment for tumors, and it relies on the phototoxicity of photosensitizers by producing reactive oxygen species (ROS) to destroy cancer cells under light irradiation. However, such phototoxicity is a double-edged sword, which is also harmful to normal tissues. To manipulate phototoxicity and improve the therapy effect, herein we have proposed a dressing-undressing strategy for de-activating and re-activating therapy functions of photosensitizer nanoparticles. One kind of metal organic framework (PCN-224), which is composed of Zr(IV) cation and tetrakis (4-carboxyphenyl) porphyrin (TCPP), has been prepared as a model of photosensitizer, and it has size of ∼70 nm. These PCN-224 nanoparticles are subsequently coated with a mesoporous organic silica (MOS) shell containing tetrasulfide bonds (-S-S-S-S-), realizing the dressing of PCN-224. MOS shell has the thickness of ∼20 nm and thus can block 1O2 (diffusion distance: <10 nm), deactivating the phototoxicity and preventing the damage to skin and eyes. Furthermore, PCN-224@MOS can be used to load chemotherapy drug (DOX·HCl). When PCN-224@MOS-DOX are mixed with glutathione (GSH), MOS shell with -S-S-S-S- bonds can be reduced by GSH and then be decomposed, which results in the undressing and then confers the exposure of PCN-224 with good PDT function as well as the release of DOX. When PCN-224@MOS-DOX dispersion is injected into the mice and accumulated in the tumor, endogenous GSH also confers the undressing of PCN-224@MOS-DOX, realizing the in-situ activation of PDT and chemotherapy for tumor. Therefore, the present study not only demonstrates a general dressing-undressing strategy for manipulating phototoxicity of photosensitizers, but also provide some insights for precise therapy of tumors without side-effects. Photosensitizers can generate reactive oxygen species (ROS) under light radiation to destroy cancer cells. However, this phototoxicity is a double-edged sword and also harmful to normal tissues such as the skin and eyes. To control phototoxicity and improve therapeutic efficacy, we prepared a PCN-224@MOS-DOX nanoplatform and proposed a dressing and undressing strategy to deactivate and reactivate the therapeutic function of the photosensitizer nanoparticles. The MOS shell can block the diffusion of 1O2, eliminate phototoxicity, and prevent damage to the skin and eyes. When injected into mice and accumulated in tumors, PCN-224@MOS-DOX dispersions are endowed with an endogenous GSH-driven undressing effect, achieving in situ activation of PDT and tumor chemotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI