Hydrogen bonding effect on pH-sensing mechanism of carbon dots

机制(生物学) 碳纤维 氢键 化学工程 材料科学 纳米技术 化学 有机化学 分子 复合材料 复合数 哲学 认识论 工程类
作者
Nguyen Minh Hoang,Nguyen Thi Bich Ngoc,Phan Thi Lan Huong,Quang‐Duy Dao,Tran Nam Anh,Dang Thi Hai Linh,Vanthan Nguyen,Le Tuan Tu,Nang X. Ho,Van‐Duong Dao
出处
期刊:Inorganic Chemistry Communications [Elsevier]
卷期号:160: 111944-111944 被引量:10
标识
DOI:10.1016/j.inoche.2023.111944
摘要

Recently, carbon dots (CDs) have received huge attention from scientists around the globe due to their unique properties, including excellent optical properties, good photobleaching, good biocompatibility, and ease of production. Notably, CDs exhibit novel results in pH sensing applications in water and intracellular environments due to their excellent anti-interfering ability and photostability. Herein, we successfully synthesized CDs by hydrothermal method using glucose and citric acid as precursors. The formation and breaking of hydrogen bonding play an important role in pH-sensing mechanisms of CDs. By using Raman signal of the hydrogen bonding in the photoluminescence (PL) spectra of CDs, we investigate here the effect of hydrogen bonding on the pH-sensing of CDs. It is expected that the mechanism of pH-sensing on the PL signal could be unraveled. As the results, the hydrogen bonding significantly reduced the PL intensity of CDs in a pH range of 7–11 but it did not influence the PL of CDs in higher pH conditions. Based on the interaction between hydrogen bonding and CDs, a new model for the pH-sensing mechanism of CDs was proposed. This work sheds new light on the mechanism of pH-sensing on the PL signal and suggests a new application of CDs in moisture and water sensors for air, soil, food, and commercial chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特微笑发布了新的文献求助10
刚刚
学海无涯完成签到,获得积分10
刚刚
科研小民工应助机智苗采纳,获得30
刚刚
楼梯口无头女孩完成签到,获得积分10
3秒前
3秒前
Grayball应助gg采纳,获得10
3秒前
3秒前
456发布了新的文献求助10
3秒前
4秒前
凤凰山发布了新的文献求助10
4秒前
独特的绿蝶完成签到,获得积分10
4秒前
4秒前
清歌扶酒发布了新的文献求助10
4秒前
东风完成签到,获得积分10
5秒前
6秒前
呆萌幼晴完成签到,获得积分10
6秒前
qinqiny完成签到 ,获得积分10
7秒前
7秒前
周小慧完成签到,获得积分20
7秒前
轻松的人龙完成签到,获得积分20
7秒前
小蘑菇应助yxf采纳,获得10
7秒前
1199关注了科研通微信公众号
7秒前
星辰大海应助小赞芽采纳,获得10
7秒前
郑开司09发布了新的文献求助10
8秒前
溪与芮行完成签到 ,获得积分10
8秒前
QS完成签到,获得积分10
8秒前
彭于晏应助Stanley采纳,获得10
10秒前
小二郎应助Stanley采纳,获得10
10秒前
扑通扑通通完成签到 ,获得积分10
10秒前
lgh完成签到,获得积分10
11秒前
研友_ZAVod8发布了新的文献求助10
11秒前
11秒前
打打应助贤惠的豪英采纳,获得10
12秒前
仙子狗尾巴花完成签到,获得积分10
12秒前
虎咪咪完成签到,获得积分10
12秒前
liyi发布了新的文献求助10
12秒前
悠旷完成签到 ,获得积分10
12秒前
dingdong完成签到,获得积分20
12秒前
12秒前
科研通AI5应助凤凰山采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762