SPIRIT: Spectral Awareness Interaction Network With Dynamic Template for Hyperspectral Object Tracking

高光谱成像 计算机科学 对象(语法) 人工智能 计算机视觉 跟踪(教育) 遥感 地质学 心理学 教育学
作者
Yuzeng Chen,Qiangqiang Yuan,Yuqi Tang,Yi Xiao,Jiang He,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:22
标识
DOI:10.1109/tgrs.2023.3347950
摘要

Hyperspectral (HS) video is able to capture abundant spectral, spatial, and temporal information about objects, which overcomes the limitations of common red-green-blue (RGB) video in complex scenarios such as similar appearances and background clutters (BCs). However, most trackers apply hand-crafted features extracted from manually selected bands instead of deep features for object representations due to limited HS data and the band gap problem. Each HS image consists of many bands, and it is challenging to fully interact with the band information while maintaining tracking speed. To this end, this article proposes a novel end-to-end spectral awareness interaction network with a dynamic template (SPIRIT) for HS video object tracking. First, a spectral awareness module (SAM) is proposed to learn band contributions with consideration of nonlinear and global interactions between HS bands. It can also cooperate with the feature extraction module pretrained with RGB data to attenuate the band gap and data-hungry. Second, an interaction module (IM) is proposed to achieve inter and intraband feature interactions to enhance tracking performance while improving efficiency. Furthermore, the proposed method contains a novel update module (UM) that evaluates the tracking confidence of the current state to adapt to object changes and attenuate tracking drifts. Extensive experiments demonstrate the superiority of our approach compared to state-of-the-arts (SOTAs) while meeting real-time demands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助热爱生活采纳,获得10
刚刚
茸茸茸完成签到,获得积分10
刚刚
帆帆帆发布了新的文献求助10
1秒前
Hello应助Rex采纳,获得10
1秒前
1秒前
干净初雪发布了新的文献求助10
1秒前
goodbuhui发布了新的文献求助10
2秒前
嘿嘿应助小小威采纳,获得10
2秒前
饼饼完成签到,获得积分10
2秒前
DX完成签到,获得积分10
2秒前
2秒前
FashionBoy应助辛束采纳,获得10
3秒前
3秒前
土豆炖牛腩完成签到,获得积分20
3秒前
九歌发布了新的文献求助10
4秒前
4秒前
ss发布了新的文献求助10
4秒前
YDX发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
FashionBoy应助夏夏采纳,获得10
4秒前
卯一发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
科研通AI6应助侯康采纳,获得10
6秒前
CC完成签到 ,获得积分10
7秒前
在下小李发布了新的文献求助10
7秒前
科研通AI6应助奔奔采纳,获得10
7秒前
00关注了科研通微信公众号
7秒前
Georges-09发布了新的文献求助10
8秒前
8秒前
情怀应助萧一采纳,获得10
8秒前
汉堡包应助My采纳,获得30
8秒前
Hello应助lf采纳,获得10
9秒前
9秒前
没有昵称发布了新的文献求助10
9秒前
海棠花完成签到,获得积分10
9秒前
歪比巴卜发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827