清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of life course trajectory methods to public health data: A comparison of sequence analysis and group-based multi-trajectory modeling for modelling childhood adversity trajectories

生命历程法 星团(航天器) 公共卫生 贫穷 心理学 序列(生物学) 弹道 老年学 人口学 发展心理学 计算机科学 医学 社会学 政治学 遗传学 生物 物理 护理部 程序设计语言 法学 天文
作者
Leonie K. Elsenburg,Andreas Rieckmann,Jessica Bengtsson,Andreas Kryger Jensen,Naja Hulvej Rod
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:340: 116449-116449 被引量:2
标识
DOI:10.1016/j.socscimed.2023.116449
摘要

There is increasing awareness of the importance of modelling life course trajectories to unravel how social, economic and health factors relate to health over time. Different methods have been developed and applied in public health to classify individuals into groups based on characteristics of their life course. However, the application and results of different methods are rarely compared. We compared the application and results of two methods to classify life course trajectories of individuals, i.e. sequence analysis and group-based multi-trajectory modeling (GBTM), using public health data. We used high-resolution Danish nationwide register data on 926,160 individuals born between 1987 and 2001, including information on the yearly occurrence of 7 childhood adversities in 2 dimensions (i.e. family poverty and family dynamics). We constructed childhood adversity trajectories from 0 to 15 years by applying (1) sequence analysis using optimal matching and cluster analysis using Ward's method and (2) GBTM using logistic and zero-inflated Poisson regressions. We identified 2 to 8 cluster solutions using both methods and determined the optimal solution for both methods. Both methods generated a low adversity, a poverty, and a consistent or high adversity cluster. The 5-cluster solution using sequence analysis additionally included a household psychiatric illness and a late adversity cluster. The 4-group solution using GBTM additionally included a moderate adversity cluster. Compared with the solution obtained through sequence analysis, the solution obtained through GBTM contained fewer individuals in the low adversity cluster and more in the other clusters. We find that the two methods generate qualitatively similar solutions, but the quantitative distributions of children over the groups are different. The method of choice depends on the type of data available and the research question of interest. We provide a comprehensive overview of important considerations and benefits and drawbacks of both methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放青旋应助001采纳,获得20
1秒前
mzhang2完成签到 ,获得积分10
3秒前
勤奋完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
15秒前
脑洞疼应助Developing_human采纳,获得10
21秒前
minnie完成签到 ,获得积分10
39秒前
56秒前
DocM完成签到 ,获得积分10
1分钟前
miki完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
建建发布了新的文献求助10
1分钟前
点点完成签到 ,获得积分10
1分钟前
1分钟前
酷酷乐瑶发布了新的文献求助10
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
小钥匙完成签到 ,获得积分10
1分钟前
2分钟前
wood完成签到,获得积分10
2分钟前
默默完成签到 ,获得积分10
2分钟前
阿明完成签到 ,获得积分10
2分钟前
游01完成签到 ,获得积分0
2分钟前
fjmelite完成签到 ,获得积分10
2分钟前
CipherSage应助Developing_human采纳,获得10
2分钟前
Lny关闭了Lny文献求助
2分钟前
小西完成签到 ,获得积分0
2分钟前
小鱼完成签到 ,获得积分10
3分钟前
天天完成签到 ,获得积分10
3分钟前
3分钟前
kusicfack完成签到,获得积分10
3分钟前
明朗完成签到 ,获得积分0
4分钟前
踏实乌冬面完成签到,获得积分10
4分钟前
sll完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
制药人完成签到 ,获得积分10
4分钟前
5分钟前
juliar完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664606
求助须知:如何正确求助?哪些是违规求助? 4866368
关于积分的说明 15108172
捐赠科研通 4823245
什么是DOI,文献DOI怎么找? 2582146
邀请新用户注册赠送积分活动 1536224
关于科研通互助平台的介绍 1494609