Large language models streamline automated machine learning for clinical studies

计算机科学 桥(图论) 机器学习 人工智能 临床试验 临床实习 数据科学 医学 病理 内科学 家庭医学
作者
Soroosh Tayebi Arasteh,Tianyu Han,Mahshad Lotfinia,Christiane Kühl,Jakob Nikolas Kather,Daniel Truhn,Sven Nebelung
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:11
标识
DOI:10.1038/s41467-024-45879-8
摘要

A knowledge gap persists between machine learning (ML) developers (e.g., data scientists) and practitioners (e.g., clinicians), hampering the full utilization of ML for clinical data analysis. We investigated the potential of the ChatGPT Advanced Data Analysis (ADA), an extension of GPT-4, to bridge this gap and perform ML analyses efficiently. Real-world clinical datasets and study details from large trials across various medical specialties were presented to ChatGPT ADA without specific guidance. ChatGPT ADA autonomously developed state-of-the-art ML models based on the original study's training data to predict clinical outcomes such as cancer development, cancer progression, disease complications, or biomarkers such as pathogenic gene sequences. Following the re-implementation and optimization of the published models, the head-to-head comparison of the ChatGPT ADA-crafted ML models and their respective manually crafted counterparts revealed no significant differences in traditional performance metrics (p ≥ 0.072). Strikingly, the ChatGPT ADA-crafted ML models often outperformed their counterparts. In conclusion, ChatGPT ADA offers a promising avenue to democratize ML in medicine by simplifying complex data analyses, yet should enhance, not replace, specialized training and resources, to promote broader applications in medical research and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚晴发布了新的文献求助10
刚刚
碧蓝的水之完成签到 ,获得积分20
1秒前
聪聪great发布了新的文献求助10
1秒前
oyfff完成签到 ,获得积分10
2秒前
无人深空完成签到,获得积分10
4秒前
科研通AI5应助Timing侠采纳,获得10
4秒前
文艺乐驹完成签到,获得积分10
5秒前
FAN完成签到,获得积分10
6秒前
7秒前
8秒前
10秒前
FIGMA发布了新的文献求助10
11秒前
认真又亦完成签到 ,获得积分10
11秒前
13秒前
charon发布了新的文献求助10
13秒前
Ava应助晚晴采纳,获得10
13秒前
李迅迅发布了新的文献求助10
13秒前
细心的冬灵完成签到,获得积分10
13秒前
13秒前
15秒前
标致乐双完成签到 ,获得积分10
15秒前
16秒前
grace关注了科研通微信公众号
17秒前
18秒前
xcydd发布了新的文献求助10
19秒前
19秒前
茕凡桃七完成签到,获得积分10
21秒前
Timing侠发布了新的文献求助10
21秒前
22秒前
聪聪great完成签到,获得积分20
26秒前
billGeorge完成签到,获得积分10
26秒前
今后应助charon采纳,获得10
27秒前
zho发布了新的文献求助10
28秒前
斯文败类应助Czd采纳,获得10
29秒前
yltstt完成签到,获得积分10
32秒前
丘比特应助Yinging采纳,获得10
32秒前
深情安青应助xcydd采纳,获得10
32秒前
34秒前
思源应助兴奋的万声采纳,获得10
39秒前
天天快乐应助anesthesia采纳,获得10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669949
求助须知:如何正确求助?哪些是违规求助? 3227345
关于积分的说明 9775203
捐赠科研通 2937487
什么是DOI,文献DOI怎么找? 1609371
邀请新用户注册赠送积分活动 760295
科研通“疑难数据库(出版商)”最低求助积分说明 735772