Comparison of joining hole making methods for fiber reinforced FDM 3D printing parts

材料科学 极限抗拉强度 复合材料 纤维 扫描电子显微镜 熔融沉积模型 复合数 3D打印
作者
Wei Lv,Xuda Qin,Zhengwei Bao,Wenchao Guo,Xianming Meng,Hao Li
标识
DOI:10.1177/09544054231223265
摘要

In this paper, continuous fiber reinforced plastic composite fused deposition modeling (FDM) 3D printing and conventional material removal processing methods were combined to investigate the effects of hole-making methods (printing, drilling and helical milling) and fiber filling patterns (solid pattern and rhombic grid pattern) on the quality and mechanical properties of joining holes in printed parts. This study evaluated the cutting forces during hole machining and assessed hole quality based on defect analysis, diameter accuracy, roundness error, and wall morphology, complemented by cost comparisons. It was observed that holes manufactured by conventional material removal methods were of better quality, but were also more costly. Tensile tests were conducted on the bolted joint structures to evaluate the mechanical properties of the joining holes, and scanning electron microscopy (SEM) examinations were performed on the cross-sections of bolted joints to analyze the tensile damage patterns. It was found that helical milled holes exhibit unique damage patterns and greater ultimate tensile displacements due to the existence of fibers directly involved in load bearing at the hole walls. This leads to a significant increase in energy absorption performance. The tensile properties of the structures consisting of specimens with a fiber filling angle of 0°/90° were superior to those with a fiber filling angle of 45°/135°. Additionally, the mechanical properties were found to be slightly better using the rhombic grid pattern than the solid pattern for the same fiber filling density and fiber filling angle. These findings provide valuable insights into the choice of preparation methods for joining holes in 3D printed parts to achieve optimal performance in a variety of engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
sahcygv发布了新的文献求助10
1秒前
娟娟发布了新的文献求助10
3秒前
迷路幻柏完成签到,获得积分10
3秒前
研友_Z1eelZ发布了新的文献求助10
3秒前
4秒前
yiyi完成签到 ,获得积分10
6秒前
7秒前
sahcygv完成签到,获得积分20
7秒前
8秒前
三井M完成签到,获得积分20
8秒前
9秒前
10秒前
10秒前
杨晓柳发布了新的文献求助10
11秒前
12秒前
JamesPei应助科科研研采纳,获得10
13秒前
wll完成签到,获得积分10
13秒前
乍染发布了新的文献求助10
14秒前
科目三应助Qiang采纳,获得10
14秒前
14秒前
史迪仔崽完成签到,获得积分10
15秒前
15秒前
19秒前
viauue9发布了新的文献求助10
19秒前
wangfang发布了新的文献求助80
22秒前
yingtian发布了新的文献求助30
23秒前
nk发布了新的文献求助10
24秒前
26秒前
sahcygv关注了科研通微信公众号
27秒前
昏睡的乌冬面完成签到 ,获得积分10
27秒前
文艺清涟发布了新的文献求助10
27秒前
oyly完成签到 ,获得积分10
29秒前
沉静的函发布了新的文献求助10
30秒前
脑洞疼应助快点毕业吧采纳,获得10
30秒前
31秒前
lmz完成签到,获得积分10
31秒前
彭于晏应助史迪仔崽采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124688
求助须知:如何正确求助?哪些是违规求助? 2775052
关于积分的说明 7725125
捐赠科研通 2430553
什么是DOI,文献DOI怎么找? 1291228
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323