作者
Yuji Tomizawa,Akifumi Hagiwara,Yasunobu Hoshino,Moto Nakaya,Koji Kamagata,Davide Cossu,Kazumasa Yokoyama,Shigeki Aoki,Nobutaka Hattori
摘要
ABSTRACT
Background
Multiple sclerosis (MS) is a refractory immune-mediated inflammatory disease of the central nervous system, and some cases of the major subtype, relapsing-remitting (RR), transition to secondary progressive (SP). However, the detailed pathogenesis, biomarkers, and effective treatment strategies for secondary progressive multiple sclerosis have not been established. The glymphatic system, which is responsible for waste clearance in the brain, is an intriguing avenue for investigation and is primarily studied through diffusion tensor image analysis along the perivascular space (DTI-ALPS). This study aimed to compare DTI-ALPS indices between patients with RRMS and SPMS to uncover potential differences in their pathologies and evaluate the utility of the glymphatic system as a possible biomarker. Methods
A cohort of 26 patients with MS (13 RRMS and 13 SPMS) who met specific criteria were enrolled in this prospective study. Magnetic resonance imaging (MRI), including diffusion MRI, 3D T1-weighted imaging, and relaxation time quantification, was conducted. The ALPS index, a measure of glymphatic function, was calculated using diffusion-weighted imaging data. Demographic variables, MRI metrics, and ALPS indices were compared between patients with RRMS and those with SPMS. Results
The ALPS index was significantly lower in the SPMS group. Patients with SPMS exhibited longer disease duration and higher Expanded Disability Status Scale (EDSS) scores than those with RRMS. Despite these differences, the correlations between the EDSS score, disease duration, and ALPS index were minimal, suggesting that the impact of these clinical variables on ALPS index variations was negligible. Discussion
Our study revealed the potential microstructural and functional differences between RRMS and SPMS related to glymphatic system impairment. Although disease severity and duration vary among subtypes, their influence on ALPS index differences appears to be limited. This highlights the stronger association between SP conversion and changes in the ALPS index. These findings align with those of previous research, indicating the involvement of the glymphatic system in the progression of MS. Conclusion
Although the causality remains uncertain, our study suggests that a reduced ALPS index, reflecting glymphatic system dysfunction, may contribute to MS progression, particularly in SPMS. This suggests the potential of the ALPS index as a diagnostic biomarker for SPMS and underscores the potential of the glymphatic system as a therapeutic target to mitigate MS progression. Future studies with larger cohorts and pathological validation are necessary to confirm these findings. This study provides new insights into the pathogenesis of SPMS and the potential for innovative therapeutic strategies.