Establishing the global isoscape of leaf carbon in C3 plants through the integrations of remote sensing, carbon, geographic, and physiological information

环境科学 遥感 碳循环 植被(病理学) 干旱 大气校正 空间生态学 大气科学 光谱带 生态系统 生态学 地理 地质学 反射率 生物 医学 物理 病理 光学
作者
Xiang Wang,Cheng Guo,Joseph L. Awange,Yongze Song,Qi Wu,Xiaowei Li,Edmund C. February,Gustavo Saiz,Ralf Kiese,Xing Li,Jingfeng Xiao,Xiaoxiang Zhao,Bo Wen
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:302: 113987-113987 被引量:2
标识
DOI:10.1016/j.rse.2023.113987
摘要

The carbon isotope composition (δ13CLeaf) of C3 plant leaves provides valuable information on the carbon-water cycle of vegetation and their responses to climate change within terrestrial ecosystems. However, global applications of δ13CLeaf are hindered by a lack of global long-term spatial maps (isoscapes) that capture vegetation δ13CLeaf variations. The ways in which δ13CLeaf varies over time and across regions are still unknown. In this study, we collected leaf carbon isotope samples across the globe and selected the optimal predictive model from three machine learning algorithms to construct long-term annual global δ13CLeaf isoscapes at a spatial resolution of 0.05° for natural C3 plants between 2001 and 2020. We also assessed the potential of remotely sensed spectral bands, atmospheric CO2 characteristics, geographic, and physiological information to estimate the δ13CLeaf of the global C3 plants. Our results show that the random forest (RF) algorithm can more accurately construct the δ13CLeaf isoscape (R2 = 0.61, Nash Sutcliffe = 0.61, RMSE = 1.21‰, MAE = 0.91‰) than the multilayer perceptron (MLP) and support vector machine (SVM). The inclusion of atmospheric CO2 characteristics, geographical, and physiological information greatly improves prediction compared to relying only on spectral bands. Among the variables, elevation, band 3 spectral reflectance, and solar-induced chlorophyll fluorescence were the three most important variables for constructing the isoscape model, and their relative importance all exceeded 85%. The predicted isoscape revealed strong spatial heterogeneity of δ13CLeaf for C3 plants at a global scale between different continental regions, with enriched values occurring in high-altitude cold and arid regions, and depleted values occurring in warm, humid, or tropical regions. For the first time, we estimated the global depleted rate of δ13CLeaf in C3 plant (−0.0491 ± 0.07 ‰ year−1 from 2001 to 2020). Over the past two decades, 86.49% and 1.00% of global grid cells showed more depleted and more enriched trends in δ13CLeaf of C3 plants, respectively. Our results demonstrated the potential for establishing isoscapes by combining remote sensing, atmospheric CO2 characteristics, physiological, and geographic variables using the RF machine learning algorithm. The isoscape products generated in this study are valuable for assessing carbon-water coupling of terrestrial ecosystems and for improving land surface models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
搜集达人应助沐沐采纳,获得10
2秒前
共享精神应助张大猛采纳,获得10
4秒前
彭于晏应助想人陪的新瑶采纳,获得10
5秒前
思源应助酷酷妙梦采纳,获得10
5秒前
okko发布了新的文献求助10
5秒前
tivyg'lk发布了新的文献求助30
6秒前
威武的茗茗完成签到,获得积分10
6秒前
刘斌发布了新的文献求助10
8秒前
8秒前
微笑的皮卡丘完成签到,获得积分10
9秒前
万能图书馆应助小鱼采纳,获得10
10秒前
12秒前
12秒前
Tina发布了新的文献求助10
13秒前
16秒前
晨青完成签到,获得积分10
16秒前
酷酷妙梦发布了新的文献求助10
17秒前
17秒前
17秒前
hhl完成签到,获得积分10
18秒前
splatoon完成签到,获得积分10
18秒前
18秒前
跳跃尔琴发布了新的文献求助30
19秒前
棒棒完成签到,获得积分10
21秒前
splatoon发布了新的文献求助20
22秒前
彤光赫显完成签到 ,获得积分10
22秒前
hibrary发布了新的文献求助10
22秒前
长期素食发布了新的文献求助10
22秒前
22秒前
23秒前
robi发布了新的文献求助10
23秒前
小鲸鱼完成签到,获得积分10
24秒前
共享精神应助大力衫采纳,获得10
24秒前
Mchong发布了新的文献求助10
24秒前
FashionBoy应助Momo采纳,获得10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825