An ensemble learning method for Bitcoin price prediction based on volatility indicators and trend

计算机科学 波动性(金融) 数字加密货币 集成学习 机器学习 人工智能 计量经济学 计算机安全 经济
作者
Adela Bârã,Simona‐Vasilica Oprea
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 107991-107991 被引量:1
标识
DOI:10.1016/j.engappai.2024.107991
摘要

Predicting the price of Bitcoin poses a challenge for researchers, merchants, traders and investors alike. This paper delves into the analysis of a Bitcoin price and volume dataset, spanning from September 2014 to July 2023. The objective is to extract multiple features related to price volatility and employ them to forecast the Bitcoin price for the subsequent 7 days. To achieve this, an Ensemble Learning Method (ELM) is proposed, able to estimate prices in both bullish and bearish markets. For price prediction, we consider three categories of predictors: 1) Bitcoin historical data; 2) volatility indicators; 3) trend prediction (price up or down) obtained through binary classification. Further, we employ a combination of ensemble models (regressors and classifiers) to predict the price at the daily level. The predictions of these models are stacked and weighted by the proposed ELM to improve the forecast accuracy. The ELM is rigorously tested under various market scenarios, yielding results that demonstrate a noteworthy level of forecast accuracy. The period of 2021 stands out as particularly interesting for prediction due to several dramatic price swings. The ELM achieves a substantial 26% improvement in overall accuracy compared to the best-performing individual ensemble model. Throughout the entire year-2021, the Mean Absolute Error (MAE) stood at 319 USD, indicating a notably low MAE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高晓啸发布了新的文献求助10
刚刚
刚刚
light123完成签到,获得积分10
1秒前
研友_LOqqmZ发布了新的文献求助10
1秒前
充电宝应助碧蓝问玉采纳,获得10
1秒前
思源应助范峰源采纳,获得15
2秒前
FashionBoy应助阳光的天与采纳,获得10
2秒前
2秒前
SU Edward发布了新的文献求助10
2秒前
大模型应助韶邑采纳,获得10
2秒前
起司猫完成签到 ,获得积分10
3秒前
浩然山河完成签到,获得积分10
3秒前
wanci应助悲凉的老虎采纳,获得10
3秒前
破空发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
香蕉觅云应助perdgs采纳,获得10
7秒前
7秒前
无极微光应助jelly采纳,获得20
7秒前
量子星尘发布了新的文献求助10
8秒前
小树发布了新的文献求助10
8秒前
8秒前
清醒完成签到,获得积分10
8秒前
9秒前
9秒前
dd完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
我是老大应助Pengcheng采纳,获得10
11秒前
你说完成签到,获得积分10
11秒前
悲凉的老虎完成签到,获得积分10
12秒前
Edmund发布了新的文献求助10
12秒前
YuenYuen发布了新的文献求助10
13秒前
残剑月发布了新的文献求助10
13秒前
TTYYI发布了新的文献求助10
13秒前
公西白翠完成签到,获得积分10
14秒前
一只秤砣完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476