An ensemble learning method for Bitcoin price prediction based on volatility indicators and trend

计算机科学 波动性(金融) 数字加密货币 集成学习 机器学习 人工智能 计量经济学 计算机安全 经济
作者
Adela Bârã,Simona‐Vasilica Oprea
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 107991-107991 被引量:1
标识
DOI:10.1016/j.engappai.2024.107991
摘要

Predicting the price of Bitcoin poses a challenge for researchers, merchants, traders and investors alike. This paper delves into the analysis of a Bitcoin price and volume dataset, spanning from September 2014 to July 2023. The objective is to extract multiple features related to price volatility and employ them to forecast the Bitcoin price for the subsequent 7 days. To achieve this, an Ensemble Learning Method (ELM) is proposed, able to estimate prices in both bullish and bearish markets. For price prediction, we consider three categories of predictors: 1) Bitcoin historical data; 2) volatility indicators; 3) trend prediction (price up or down) obtained through binary classification. Further, we employ a combination of ensemble models (regressors and classifiers) to predict the price at the daily level. The predictions of these models are stacked and weighted by the proposed ELM to improve the forecast accuracy. The ELM is rigorously tested under various market scenarios, yielding results that demonstrate a noteworthy level of forecast accuracy. The period of 2021 stands out as particularly interesting for prediction due to several dramatic price swings. The ELM achieves a substantial 26% improvement in overall accuracy compared to the best-performing individual ensemble model. Throughout the entire year-2021, the Mean Absolute Error (MAE) stood at 319 USD, indicating a notably low MAE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
susu完成签到,获得积分10
刚刚
香蕉觅云应助科研小桶采纳,获得10
1秒前
狗123完成签到,获得积分10
1秒前
heal发布了新的文献求助10
2秒前
乐乐应助瑾辰采纳,获得10
2秒前
wendy发布了新的文献求助10
2秒前
承乐发布了新的文献求助10
2秒前
3秒前
3秒前
tree薯要吃麦麦完成签到,获得积分10
3秒前
3秒前
斯文败类应助刘智山采纳,获得10
3秒前
科研通AI6应助老年陈皮采纳,获得10
3秒前
Ava应助我是一只小豹子采纳,获得10
3秒前
HXH发布了新的文献求助10
3秒前
4秒前
4秒前
小二郎应助悦耳笑晴采纳,获得10
4秒前
4秒前
Synthen完成签到,获得积分10
5秒前
xliiii完成签到,获得积分10
5秒前
apex完成签到 ,获得积分10
5秒前
5秒前
双木明非发布了新的文献求助10
5秒前
南下发布了新的文献求助10
5秒前
KDVBHGJDFHGAV完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
深情安青应助小杜采纳,获得10
7秒前
7秒前
8秒前
8秒前
如虎添亿发布了新的文献求助10
8秒前
8秒前
9秒前
深夜酒馆关注了科研通微信公众号
9秒前
英俊的铭应助勤恳洙采纳,获得10
10秒前
10秒前
M123完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603