An ensemble learning method for Bitcoin price prediction based on volatility indicators and trend

计算机科学 波动性(金融) 数字加密货币 集成学习 机器学习 人工智能 计量经济学 计算机安全 经济
作者
Adela Bârã,Simona‐Vasilica Oprea
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 107991-107991 被引量:1
标识
DOI:10.1016/j.engappai.2024.107991
摘要

Predicting the price of Bitcoin poses a challenge for researchers, merchants, traders and investors alike. This paper delves into the analysis of a Bitcoin price and volume dataset, spanning from September 2014 to July 2023. The objective is to extract multiple features related to price volatility and employ them to forecast the Bitcoin price for the subsequent 7 days. To achieve this, an Ensemble Learning Method (ELM) is proposed, able to estimate prices in both bullish and bearish markets. For price prediction, we consider three categories of predictors: 1) Bitcoin historical data; 2) volatility indicators; 3) trend prediction (price up or down) obtained through binary classification. Further, we employ a combination of ensemble models (regressors and classifiers) to predict the price at the daily level. The predictions of these models are stacked and weighted by the proposed ELM to improve the forecast accuracy. The ELM is rigorously tested under various market scenarios, yielding results that demonstrate a noteworthy level of forecast accuracy. The period of 2021 stands out as particularly interesting for prediction due to several dramatic price swings. The ELM achieves a substantial 26% improvement in overall accuracy compared to the best-performing individual ensemble model. Throughout the entire year-2021, the Mean Absolute Error (MAE) stood at 319 USD, indicating a notably low MAE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unique发布了新的文献求助10
刚刚
wxh完成签到,获得积分20
刚刚
1秒前
lishihao发布了新的文献求助10
2秒前
hxx完成签到,获得积分10
3秒前
bkagyin应助念姬采纳,获得10
3秒前
5秒前
chem发布了新的文献求助10
5秒前
钙离子发布了新的文献求助10
5秒前
CodeCraft应助xwl9955采纳,获得10
6秒前
6秒前
xiaoya完成签到,获得积分10
7秒前
lishihao完成签到,获得积分10
8秒前
inconnu发布了新的文献求助10
8秒前
典雅天玉发布了新的文献求助30
9秒前
wangrch6完成签到,获得积分10
10秒前
10秒前
开心不评完成签到 ,获得积分10
13秒前
赵云江完成签到,获得积分10
13秒前
张利双发布了新的文献求助10
13秒前
13秒前
年轻代灵完成签到 ,获得积分10
14秒前
14秒前
zxy完成签到,获得积分10
14秒前
顾天与发布了新的文献求助10
15秒前
Mr发布了新的文献求助10
17秒前
17秒前
18秒前
琳儿真的很瘦了完成签到,获得积分20
18秒前
FFFFFF发布了新的文献求助10
21秒前
22秒前
典雅天玉完成签到,获得积分10
23秒前
222123发布了新的文献求助10
24秒前
曾国强完成签到,获得积分10
25秒前
顾天与完成签到,获得积分10
25秒前
26秒前
yyymmma发布了新的文献求助10
27秒前
27秒前
28秒前
haha9haha完成签到,获得积分10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962917
求助须知:如何正确求助?哪些是违规求助? 3508861
关于积分的说明 11143755
捐赠科研通 3241789
什么是DOI,文献DOI怎么找? 1791689
邀请新用户注册赠送积分活动 873065
科研通“疑难数据库(出版商)”最低求助积分说明 803579