胡椒粉
锌
染色体易位
纳米颗粒
核化学
溶解
化学
韧皮部
植物
材料科学
生物
纳米技术
食品科学
生物化学
有机化学
基因
物理化学
作者
Sandra Rodrigues,Astrid Avellan,Garret D. Bland,Matheus Carlos Romeiro Miranda,Camille Larue,Marcelo L. Wagner,Diana A. Moreno-Bayona,Hiram Castillo‐Michel,Gregory V. Lowry,Sónia Rodrigues
标识
DOI:10.1021/acs.est.3c08723
摘要
Here, isotopically labeled 68ZnO NPs (ZnO NPs) and 68ZnO NPs with a thin 68Zn3(PO4)2 shell (ZnO_Ph NPs) were foliarly applied (40 μg Zn) to pepper plants (Capsicum annuum) to determine the effect of surface chemistry of ZnO NPs on the Zn uptake and systemic translocation to plant organs over 6 weeks. Despite similar dissolution of both Zn-based NPs after 3 weeks, the Zn3(PO4)2 shell on ZnO_Ph NPs (48 ± 12 nm; -18.1 ± 0.6 mV) enabled a leaf uptake of 2.31 ± 0.34 μg of Zn, which is 2.7 times higher than the 0.86 ± 0.18 μg of Zn observed for ZnO NPs (26 ± 8 nm; 14.6 ± 0.4 mV). Further, ZnO_Ph NPs led to higher Zn mobility and phloem loading, while Zn from ZnO NPs was stored in the epidermal tissues, possibly through cell wall immobilization as a storage strategy. These differences led to higher translocation of Zn from the ZnO_Ph NPs within all plant compartments. ZnO_Ph NPs were also more persistent as NPs in the exposed leaf and in the plant stem over time. As a result, the treatment of ZnO_Ph NPs induced significantly higher Zn transport to the fruit than ZnO NPs. As determined by spICP-TOFMS, Zn in the fruit was not in the NP form. These results suggest that the Zn3(PO4)2 shell on ZnO NPs can help promote the transport of Zn to pepper fruits when foliarly applied. This work provides insight into the role of Zn3(PO4)2 on the surface of ZnO NPs in foliar uptake and in planta biodistribution for improving Zn delivery to edible plant parts and ultimately improving the Zn content in food for human consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI