Physics-informed neural networks with domain decomposition for the incompressible Navier–Stokes equations

物理 纳维-斯托克斯方程组 压缩性 领域(数学分析) 流量(数学) 区域分解方法 人工神经网络 不可压缩流 趋同(经济学) 偏微分方程 应用数学 机械 数学分析 热力学 人工智能 有限元法 数学 计算机科学 量子力学 经济 经济增长
作者
Linyan Gu,Shanlin Qin,Lei Xu,Rongliang Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (2) 被引量:11
标识
DOI:10.1063/5.0188830
摘要

Physics-informed neural network (PINN) has emerged as a promising approach for solving differential equations in recent years. However, their application to large-scale complex problems has faced challenges regarding accuracy and efficiency. To address these limitations, domain decomposition has gained popularity as an effective strategy. This paper studies a domain decomposition PINN method for solving incompressible Navier–Stokes equations. We assess the method's predicted accuracy, convergence, and the impact of different strategies on performance. In the domain decomposition PINN method, individual PINN is employed for each subdomain to compute local solutions, which are seamlessly connected by enforcing additional continuity conditions at the interfaces. To improve the method's performance, we investigate various continuity conditions at the interfaces and analyze their influence on the predictive accuracy and interface continuity. Furthermore, we introduce two approaches: the dynamic weight method and a novel neural network architecture incorporating attention mechanisms, both aimed at mitigating gradient pathologies commonly encountered in PINN methods. To demonstrate the effectiveness of the proposed method, we apply it to a range of forward and inverse problems involving diverse incompressible Navier–Stokes flow scenarios. This includes solving benchmark problems such as the two-dimensional (2D) Kovasznay flow, the three-dimensional (3D) Beltrami flow, the 2D lid-driven cavity flow, and the 2D cylinder wake. Additionally, we conduct 3D blood flow simulations for synthetic flow geometries and real blood vessels. The experimental results demonstrate the capability and versatility of the domain decomposition PINN method in accurately solving incompressible Navier–Stokes flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
牧野发布了新的文献求助10
3秒前
4秒前
ymy123发布了新的文献求助10
6秒前
NexusExplorer应助JasinCharlie采纳,获得10
6秒前
危机的芸完成签到 ,获得积分10
7秒前
小新应助小丘2024采纳,获得10
8秒前
糖糖发布了新的文献求助10
8秒前
科研通AI2S应助hh0采纳,获得10
9秒前
肥蛇外传完成签到,获得积分10
11秒前
激昂的亦竹完成签到 ,获得积分10
13秒前
14秒前
传奇3应助asd采纳,获得10
14秒前
自信飞柏完成签到 ,获得积分10
15秒前
敏感的曼香完成签到,获得积分10
16秒前
aleilei完成签到 ,获得积分10
19秒前
Orange应助song采纳,获得10
20秒前
hahaha完成签到 ,获得积分10
21秒前
852应助六号与七号采纳,获得10
22秒前
24秒前
小马甲应助1997SD采纳,获得10
24秒前
Linghu发布了新的文献求助20
25秒前
JasinCharlie完成签到,获得积分10
25秒前
科研通AI2S应助hh0采纳,获得10
26秒前
26秒前
小补给卡发布了新的文献求助20
26秒前
26秒前
雷小牛完成签到 ,获得积分10
28秒前
沈括完成签到,获得积分10
29秒前
30秒前
SYC完成签到,获得积分20
30秒前
30秒前
MTZ997发布了新的文献求助10
31秒前
浮生发布了新的文献求助10
33秒前
maxueni完成签到,获得积分10
34秒前
JasinCharlie发布了新的文献求助10
35秒前
37秒前
39秒前
爆米花应助细腻的沂采纳,获得10
40秒前
1997SD发布了新的文献求助10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240999
求助须知:如何正确求助?哪些是违规求助? 2885733
关于积分的说明 8239871
捐赠科研通 2554202
什么是DOI,文献DOI怎么找? 1382347
科研通“疑难数据库(出版商)”最低求助积分说明 649559
邀请新用户注册赠送积分活动 625175