纳米复合材料
硼氢化钠
罗丹明B
催化作用
罗丹明6G
核化学
材料科学
傅里叶变换红外光谱
纤维素
化学工程
化学
有机化学
纳米技术
光催化
分子
工程类
作者
Heba Salah Mousa,Soad S. Abd El‐Hay,Ragaa El Sheikh,Ayman A. Gouda,Samar Abd El-Ghaffar,Mohamed Abd El–Aal
标识
DOI:10.1016/j.ijbiomac.2023.128890
摘要
The release of harmful organic dyes from different industries besides its degradation products is a major contributor to environmental contamination. The catalytic reduction of these organic pollutants using nanocomposites based on polymeric material presents potential advantages for the environment. In this study, novel nanocomposite based on cellulose acetate (CA)-derived from discharged cigarette butts and zinc oxide nanoparticles (ZnO NPs) was prepared utilizing a very simple and low-cost solution blending method and used as support for silver nanoparticles (Ag NPs). A simple reduction method was used to anchor different percentages of Ag NPs on the ZnO@CA nanocomposite surface via utilizing sodium borohydride as a reducing agent. The Ag-ZnO@CA nanocomposite was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The TEM analysis showed spherical Ag NPs, with an average diameter of ∼17.6 nm, were uniformly anchored on the ZnO@CA nanocomposite surface. The prepared nanocomposites were evaluated as catalysts for the reduction of organic dyes in water. It was found that 10 % Ag-ZnO@CA nanocomposite showed a remarkable reduction of Rhodamine B (RhB), Rhodamine 6G (Rh6G), Methylene Blue (MB), and Sunset Yellow (SY) dyes in short time. In the presence of this nanocomposite, the rate constant, kapp values for RhB, Rh6G, MB, and SY were 0.3498 min−1, 1.51 min−1, 0.2292 min−1, and 0.733 min−1, respectively. This nanocomposite was recovered and reused in five successive cycles, with a negligible loss of its activity. Furthermore, the nanocomposites demonstrated moderate antibacterial activity toward Staphylococcus aureus and Escherichia coli. Thus, this study directed attention on recycling of waste material to a valuable nanocomposite and its applications in environmental protection.
科研通智能强力驱动
Strongly Powered by AbleSci AI