亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying Heterogeneous Micromechanical Properties of Biological Tissues via Physics‐Informed Neural Networks

人工神经网络 计算机科学 纳米技术 人工智能 材料科学 生物系统 生化工程 生物 物理 工程类
作者
Wensi Wu,Mitchell Daneker,Kevin T. Turner,Matthew A. Jolley,Lu Lu
出处
期刊:Small methods [Wiley]
卷期号:9 (1) 被引量:14
标识
DOI:10.1002/smtd.202400620
摘要

The heterogeneous micromechanical properties of biological tissues have profound implications across diverse medical and engineering domains. However, identifying full-field heterogeneous elastic properties of soft materials using traditional engineering approaches is fundamentally challenging due to difficulties in estimating local stress fields. Recently, there has been a growing interest in using data-driven models to learn full-field mechanical responses such as displacement and strain from experimental or synthetic data. However, research studies on inferring full-field elastic properties of materials, a more challenging problem, are scarce, particularly for large deformation, hyperelastic materials. Here, we propose a physics-informed machine learning approach to identify the elasticity map in nonlinear, large deformation hyperelastic materials. We evaluate the prediction accuracies and computational efficiency of physics-informed neural networks (PINNs) by inferring the heterogeneous elasticity maps across three materials with structural complexity that closely resemble real tissue patterns, such as brain tissue and tricuspid valve tissue. We further applied our improved architecture to three additional examples of breast cancer tissue and extended our analysis to three hyperelastic constitutive models: Neo-Hookean, Mooney Rivlin, and Gent. Our selected network architecture consistently produced highly accurate estimations of heterogeneous elasticity maps, even when there was up to 10% noise present in the training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
ye发布了新的文献求助10
18秒前
faye完成签到 ,获得积分20
20秒前
22秒前
30秒前
32秒前
35秒前
41秒前
51秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助150
1分钟前
1分钟前
1分钟前
ye完成签到 ,获得积分10
1分钟前
Akim应助dew采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
虚幻沛菡发布了新的文献求助10
2分钟前
jie完成签到 ,获得积分10
2分钟前
cc完成签到,获得积分10
3分钟前
iDong完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
dew发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
xiuxiu发布了新的文献求助10
3分钟前
玩命的夏彤给玩命的夏彤的求助进行了留言
3分钟前
科研通AI5应助英勇兔子采纳,获得10
3分钟前
淡然的妙芙应助lezbj99采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5091497
求助须知:如何正确求助?哪些是违规求助? 4305806
关于积分的说明 13416100
捐赠科研通 4131518
什么是DOI,文献DOI怎么找? 2263164
邀请新用户注册赠送积分活动 1266984
关于科研通互助平台的介绍 1202128