柯肯德尔效应
镍
材料科学
氧化物
电化学
阴极
化学工程
成核
纳米技术
冶金
化学
电极
物理化学
有机化学
工程类
作者
Ziyao Gao,Chenglong Zhao,Kai Zhou,Junru Wu,Yao Tian,Xianming Deng,Lihan Zhang,Kui Lin,Feiyu Kang,Lele Peng,Marnix Wagemaker,Baohua Li
标识
DOI:10.1038/s41467-024-45373-1
摘要
Abstract Nickel-rich layered oxide cathodes promise ultrahigh energy density but is plagued by the mechanical failure of the secondary particle upon (de)lithiation. Existing approaches for alleviating the structural degradation could retard pulverization, yet fail to tune the stress distribution and root out the formation of cracks. Herein, we report a unique strategy to uniformize the stress distribution in secondary particle via Kirkendall effect to stabilize the core region during electrochemical cycling. Exotic metal/metalloid oxides (such as Al 2 O 3 or SiO 2 ) is introduced as the heterogeneous nucleation seeds for the preferential growth of the precursor. The calcination treatment afterwards generates a dopant-rich interior structure with central Kirkendall void, due to the different diffusivity between the exotic element and nickel atom. The resulting cathode material exhibits superior structural and electrochemical reversibility, thus contributing to a high specific energy density (based on cathode) of 660 Wh kg −1 after 500 cycles with a retention rate of 86%. This study suggests that uniformizing stress distribution represents a promising pathway to tackle the structural instability facing nickel-rich layered oxide cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI